Multichannel Phase Unwrapping With Graph Cuts

Markovian approaches have proven to be effective for solving the multichannel phase-unwrapping (PU) problem, particularly when dealing with noisy data and big discontinuities. This letter presents a Markovian approach to solve the PU problem based on a new a priori model, the total variation, and graph-cut-based optimization algorithms. The proposed method turns out to be fast, simple, and robust. Moreover, compared with other approaches, the proposed algorithm is able to unwrap and restore the solution at the same time, without any additional filtering. A set of experimental results on both simulated and real data illustrates the effectiveness of our approach.

[1]  Hiroshi Ishikawa,et al.  Exact Optimization for Markov Random Fields with Convex Priors , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Ken D. Sauer,et al.  ML parameter estimation for Markov random fields with applications to Bayesian tomography , 1998, IEEE Trans. Image Process..

[3]  Vladimir Kolmogorov,et al.  What energy functions can be minimized via graph cuts? , 2002, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Fuk K. Li,et al.  Synthetic aperture radar interferometry , 2000, Proceedings of the IEEE.

[5]  VekslerOlga,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001 .

[6]  Jérôme Darbon,et al.  Global optimization for first order Markov Random Fields with submodular priors , 2008, Discret. Appl. Math..

[7]  Vito Pascazio,et al.  Maximum a posteriori estimation of height profiles in InSAR imaging , 2004, IEEE Geoscience and Remote Sensing Letters.

[8]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Mario Costantini,et al.  A novel phase unwrapping method based on network programming , 1998, IEEE Trans. Geosci. Remote. Sens..

[10]  S. Gómez,et al.  The triangle method for finding the corner of the L-curve , 2002 .

[11]  José M. Bioucas-Dias,et al.  Phase Unwrapping via Graph Cuts , 2005, IEEE Transactions on Image Processing.

[12]  Jérôme Darbon,et al.  JOINT FILTERING OF SAR INTERFEROMETRIC PHASE AND AMPLITUDE DATA IN URBAN AREAS BY TV MINIMIZATION , 2008 .

[13]  Jérôme Darbon,et al.  Joint Filtering of SAR Interferometric and Amplitude Data in Urban Areas by TV Minimization , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[14]  Stan Z. Li,et al.  Markov Random Field Modeling in Image Analysis , 2001, Computer Science Workbench.

[15]  Gianfranco Fornaro,et al.  Phase difference-based multichannel phase unwrapping , 2005, IEEE Transactions on Image Processing.

[16]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[17]  Vito Pascazio,et al.  Multifrequency InSAR height reconstruction through maximum likelihood estimation of local planes parameters , 2002, IEEE Trans. Image Process..

[18]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[19]  K Itoh,et al.  Analysis of the phase unwrapping algorithm. , 1982, Applied optics.

[20]  Olga Veksler,et al.  Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.