This work is a study of unification in some equational theories that have a one-sided distributivity axiom: x x (y + z) = x x y + x x z. First one-sided distributivity, the theory which has only this axiom, is studied. It is shown that, although one-sided distributivity is a simple theory in many ways, its unification problem is not trivial, and known universal unification procedures fail to provide a decision procedure for it. We give a unification procedure based on a process of decomposition combined with a generalized occurs check, which may be applied in any permutative theory, and another test. These tests together ensure termination. Next, we show that unification is undecidable if the laws of associativity x + (y + z) = (x + y) + z and a one-sided unit element x x 1 = x are added to one-sided distributivity. Unification under one-sided distributivity with (one-sided) unit element is shown to be as hard as Markov's problem (associative unification), whereas unification under two-sided distributivity, with or without unit element, is NP-hard. The study of these problems is motivated by possible applications in circuit synthesis and by the need for gaining insight in the problem of combining theories with overlapping sets of operator symbols.
[1]
Jan A. Bergstra,et al.
Algebra of Communicating Processes with Abstraction
,
1985,
Theor. Comput. Sci..
[2]
Robert E. Tarjan,et al.
Efficiency of a Good But Not Linear Set Union Algorithm
,
1972,
JACM.
[3]
Alberto Martelli,et al.
An Efficient Unification Algorithm
,
1982,
TOPL.
[4]
Mike Paterson,et al.
Linear unification
,
1976,
STOC '76.
[5]
Jean-Marie Hullot,et al.
Canonical Forms and Unification
,
1980,
CADE.
[6]
Martin D. Davis.
Hilbert's Tenth Problem is Unsolvable
,
1973
.
[7]
G. Huet,et al.
Equations and rewrite rules: a survey
,
1980
.
[8]
G. Makanin.
The Problem of Solvability of Equations in a Free Semigroup
,
1977
.
[9]
Claude Kirchner,et al.
A New Equational Unification Method: A Generalization of Martelli-Montanari's Algorithm
,
1984,
CADE.
[10]
Jörg H. Siekmann,et al.
Universal Unification
,
1982,
GWAI.