Exponential synchronization of a new Lorenz-like attractor with uncertain parameters via single input

The new Lorenz-like attractor, reported by Li et al. (2009) [1], includes a product term of system parameters. It can be predicted that chaotic synchronization of this new chaotic system becomes more complicated by taking account of uncertain system parameters. In this paper, the exponential synchronization between two nearly identical Lorenz-like attractors by applying single input controller associated with system parameter update laws is proposed. Unlike multiple control inputs and state variable feedbacks required in chaotic synchronization in the literature, the proposed single input controller includes only one state variable proportional feedback. Two kinds of system parameter update laws are introduced and sufficient conditions are provided to guarantee exponential stability of both synchronous errors and system parameter errors. In addition, numerical simulations are also performed to verify the effectiveness of presented schemes.

[1]  L. O. Chua,et al.  The double scroll family. I: Rigorous of chaos. II: Rigorous analysis of bifurcation phenomena , 1986 .

[2]  G. Tigan,et al.  Analysis of a 3D chaotic system , 2006, math/0608568.

[3]  Qingguo Li,et al.  Chaos synchronization of a new hyperchaotic system , 2010, Appl. Math. Comput..

[4]  Edward Ott,et al.  Controlling chaos , 2006, Scholarpedia.

[5]  Jun-Juh Yan,et al.  Exponential synchronization of chaotic systems subject to uncertainties in the control input , 2010, Appl. Math. Comput..

[6]  Jinhu Lu,et al.  Adaptive feedback synchronization of Lü system , 2004 .

[7]  Zengrong Liu,et al.  Adaptive synchronization of a class of continuous chaotic systems with uncertain parameters , 2008 .

[8]  Pei Yu,et al.  Study of Globally Exponential Synchronization for the Family of RÖssler Systems , 2006, Int. J. Bifurc. Chaos.

[9]  Zhenya Yan,et al.  Globally Exponential Hyperchaos (Lag) Synchronization in a Family of Modified hyperchaotic RÖssler Systems , 2007, Int. J. Bifurc. Chaos.

[10]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[11]  Yeong-Jeu Sun,et al.  Exponential synchronization between two classes of chaotic systems , 2009 .

[12]  Congxu Zhu,et al.  Adaptive synchronization of two novel different hyperchaotic systems with partly uncertain parameters , 2009, Appl. Math. Comput..

[13]  Jiangang Zhang,et al.  Nonlinear dynamics and circuit implementation for a new Lorenz-like attractor , 2009 .

[14]  Chi-Ching Yang Adaptive control and synchronization of identical new chaotic flows with unknown parameters via single input , 2010, Appl. Math. Comput..

[15]  Yi Li,et al.  Adaptive control and synchronization of a novel hyperchaotic system with uncertain parameters , 2008, Appl. Math. Comput..

[16]  M. Yassen Chaos control of chaotic dynamical systems using backstepping design , 2006 .

[17]  Hsien-Keng Chen,et al.  Global chaos synchronization of new chaotic systems via nonlinear control , 2005 .

[18]  Xue-Rong Shi,et al.  Adaptive added-order anti-synchronization of chaotic systems with fully unknown parameters , 2009, Appl. Math. Comput..

[19]  Chongxin Liu,et al.  A new chaotic attractor , 2004 .

[20]  P. Olver Nonlinear Systems , 2013 .

[21]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[22]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[23]  Uchechukwu E. Vincent,et al.  Synchronization of Rikitake chaotic attractor using active control , 2005 .

[24]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[25]  Karim Kemih,et al.  Control of nuclear spin generator system based on passive control , 2009 .

[26]  Wang Hua Chaos Synchronization of a New 3D Chaotic System , 2010 .

[27]  L. Chua,et al.  The double scroll family , 1986 .

[28]  Guoliang Cai,et al.  Chaos Synchronization of a New Chaotic System via Nonlinear Control , 2007 .