Large scale random fields generation using localized Karhunen–Loève expansion

In this paper the generation of random fields when the domain is much larger than the characteristic correlation length is made using an adaptation of the Karhunen–Loève expansion (KLE). The KLE requires the computation of the eigen-functions and the eigen-values of the covariance operator for its modal representation. This step can be very expensive if the domain is much larger than the correlation length. To deal with this issue, the domain is split in sub-domains where this modal decomposition can be comfortably computed. The random coefficients of the KLE are conditioned in order to guarantee the continuity of the field and a proper representation of the covariance function on the whole domain. This technique can also be parallelized and applied for non-stationary random fields. Some numerical studies, with different correlation functions and lengths, are presented.

[1]  G. Matheron The intrinsic random functions and their applications , 1973, Advances in Applied Probability.

[2]  Harry L. Van Trees,et al.  Detection, Estimation, and Modulation Theory, Part I , 1968 .

[3]  Mircea Grigoriu,et al.  On the spectral representation method in simulation , 1993 .

[4]  Mircea Grigoriu,et al.  Non-Gaussian models for stochastic mechanics , 2000 .

[5]  Jo Eidsvik,et al.  Norges Teknisk-naturvitenskapelige Universitet Iterative Numerical Methods for Sampling from High Dimensional Gaussian Distributions Iterative Numerical Methods for Sampling from High Dimensional Gaussian Distributions , 2022 .

[6]  M. Priestley Evolutionary Spectra and Non‐Stationary Processes , 1965 .

[7]  M. Rosenblatt Remarks on a Multivariate Transformation , 1952 .

[8]  Keinosuke Fukunaga,et al.  Representation of Random Processes Using the Finite Karhunen-Loève Expansion , 1970, Inf. Control..

[9]  C. R. Dietrich,et al.  Fast and Exact Simulation of Stationary Gaussian Processes through Circulant Embedding of the Covariance Matrix , 1997, SIAM J. Sci. Comput..

[10]  Abraham M. Hasofer,et al.  On the Slepian process of a random Gaussian trigonometric polynomial , 1989, IEEE Trans. Inf. Theory.

[11]  Christian Soize,et al.  Non-Gaussian simulation using Hermite polynomial expansion: convergences and algorithms , 2002 .

[12]  A. Mantoglou,et al.  The Turning Bands Method for simulation of random fields using line generation by a spectral method , 1982 .

[13]  H. Rue Fast sampling of Gaussian Markov random fields , 2000 .

[14]  M. Novak,et al.  Simulation of Spatially Incoherent Random Ground Motions , 1993 .

[15]  Masanobu Shinozuka,et al.  ARMA Representation of Random Processes , 1985 .

[16]  A. Kiureghian,et al.  OPTIMAL DISCRETIZATION OF RANDOM FIELDS , 1993 .

[17]  Ahsan Kareem,et al.  Simulation of Multivariate Nonstationary Random Processes by FFT , 1991 .

[18]  José Carlos Príncipe,et al.  On the relationship between the Karhunen-Loeve transform and the prolate spheroidal wave functions , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[19]  R. Ghanem,et al.  Stochastic Finite Element Expansion for Random Media , 1989 .

[20]  Christian Soize,et al.  Itô SDE-based Generator for a Class of Non-Gaussian Vector-valued Random Fields in Uncertainty Quantification , 2014, SIAM J. Sci. Comput..

[21]  T. Faniran Numerical Solution of Stochastic Differential Equations , 2015 .

[22]  Masanobu Shinozuka,et al.  Simulation of Stochastic Fields by Statistical Preconditioning , 1990 .

[23]  Bruce R. Ellingwood,et al.  Orthogonal Series Expansions of Random Fields in Reliability Analysis , 1994 .

[24]  Omar M. Knio,et al.  Spectral Methods for Uncertainty Quantification , 2010 .

[25]  P. Whittle ON STATIONARY PROCESSES IN THE PLANE , 1954 .

[26]  Pol D. Spanos,et al.  A stochastic Galerkin expansion for nonlinear random vibration analysis , 1993 .

[27]  M. Shinozuka,et al.  Digital simulation of random processes and its applications , 1972 .

[28]  I. Papaioannou,et al.  Numerical methods for the discretization of random fields by means of the Karhunen–Loève expansion , 2014 .

[29]  George Deodatis,et al.  Non-stationary stochastic vector processes: seismic ground motion applications , 1996 .

[30]  H. Davis,et al.  Linear algebra and linear operators in engineering : with applications in mathematica , 2000 .

[31]  K. Phoon,et al.  Comparison between Karhunen-Loève expansion and translation-based simulation of non-Gaussian processes , 2007 .

[32]  J. P. Delhomme,et al.  Spatial variability and uncertainty in groundwater flow parameters: A geostatistical approach , 1979 .

[33]  M. Shinozuka,et al.  Simulation of Stochastic Processes by Spectral Representation , 1991 .

[34]  Mircea Grigoriu Parametric models of nonstationary Gaussian processes , 1995 .

[35]  J. Makhoul On the eigenvectors of symmetric Toeplitz matrices , 1981 .

[36]  Masanobu Shinozuka,et al.  Simulation of Multivariate and Multidimensional Random Processes , 1971 .

[37]  Jiannong Fang,et al.  An efficient and accurate algorithm for generating spatially‐correlated random fields , 2003 .

[38]  Heyrim Cho,et al.  Karhunen-Loève expansion for multi-correlated stochastic processes , 2013 .

[39]  Régis Cottereau,et al.  Efficient Parallel Generation of Random Field of Mechanical Properties for Geophysical Application , 2015 .

[40]  L. Borgman,et al.  Ocean wave simulation for engineering design , 1967 .

[41]  Edmond Chow,et al.  Preconditioned Krylov Subspace Methods for Sampling Multivariate Gaussian Distributions , 2014, SIAM J. Sci. Comput..

[42]  R. Ghanem,et al.  Polynomial Chaos in Stochastic Finite Elements , 1990 .

[43]  Kok-Kwang Phoon,et al.  Convergence study of the truncated Karhunen–Loeve expansion for simulation of stochastic processes , 2001 .

[44]  M. Unser ON THE APPROXIMATION OF THE DISCRETE KARHUNEN-LOEVE TRANSFORM FOR STATIONARY PROCESSES , 1984 .

[45]  Jinkyu Yang,et al.  On the normality and accuracy of simulated random processes , 1973 .

[46]  Guillaume Perrin Random fields and associated statistical inverse problems for uncertainty quantification : application to railway track geometries for high-speed trains dynamical responses and risk assessment , 2013 .

[47]  W. Gersch,et al.  Synthesis of multivariate random vibration systems: A two-stage least squares AR-MA model approach☆ , 1977 .

[48]  M. Grigoriu Simulation of stationary non-Gaussian translation processes , 1998 .

[49]  M. Shinozuka,et al.  Auto‐Regressive Model for Nonstationary Stochastic Processes , 1988 .

[50]  K. Phoon,et al.  Simulation of strongly non-Gaussian processes using Karhunen–Loeve expansion , 2005 .