Markov Chain Monte Carlo Methods, Survey with Some Frequent Misunderstandings

In this chapter, we review some of the most standard MCMC tools used in Bayesian computation, along with vignettes on standard misunderstandings of these approaches taken from Q \&~A's on the forum Cross-validated answered by the first author.

[1]  Eric Moulines,et al.  Adaptive parallel tempering algorithm , 2012, 1205.1076.

[2]  M. Girolami,et al.  Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[3]  Jean-Marie Cornuet,et al.  Lack of confidence in ABC model choice , 2011, 1102.4432.

[4]  Heikki Haario,et al.  Adaptive proposal distribution for random walk Metropolis algorithm , 1999, Comput. Stat..

[5]  C. Andrieu,et al.  The pseudo-marginal approach for efficient Monte Carlo computations , 2009, 0903.5480.

[6]  G. Roberts,et al.  Kinetic energy choice in Hamiltonian/hybrid Monte Carlo , 2017, Biometrika.

[7]  J. Møller,et al.  An efficient Markov chain Monte Carlo method for distributions with intractable normalising constants , 2006 .

[8]  Paul Fearnhead,et al.  Constructing summary statistics for approximate Bayesian computation: semi‐automatic approximate Bayesian computation , 2012 .

[9]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[10]  D. Rubin Bayesianly Justifiable and Relevant Frequency Calculations for the Applied Statistician , 1984 .

[11]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[12]  Richard G. Everitt,et al.  Likelihood-free estimation of model evidence , 2011 .

[13]  George Casella,et al.  A Short History of Markov Chain Monte Carlo: Subjective Recollections from Incomplete Data , 2008, 0808.2902.

[14]  M. Blum Approximate Bayesian Computation: A Nonparametric Perspective , 2009, 0904.0635.

[15]  Yanan Fan,et al.  Handbook of Approximate Bayesian Computation , 2018 .

[16]  S. Sisson,et al.  A comparative review of dimension reduction methods in approximate Bayesian computation , 2012, 1202.3819.

[17]  Peter W. Glynn,et al.  Exact estimation for Markov chain equilibrium expectations , 2014, Journal of Applied Probability.

[18]  Jun S. Liu,et al.  Covariance Structure and Convergence Rate of the Gibbs Sampler with Various Scans , 1995 .

[19]  J. Heng,et al.  Unbiased Hamiltonian Monte Carlo with couplings , 2017, Biometrika.

[20]  Paul Fearnhead,et al.  On the Asymptotic Efficiency of Approximate Bayesian Computation Estimators , 2015, 1506.03481.

[21]  Andrew Gelman,et al.  The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..

[22]  D. Woodard,et al.  Sufficient Conditions for Torpid Mixing of Parallel and Simulated Tempering , 2009 .

[23]  J. Cunningham,et al.  Expectation Propagation as a Way of Life , 2020 .

[24]  A. Pettitt,et al.  Approximate Bayesian computation using indirect inference , 2011 .

[25]  P. Jacob,et al.  Unbiased Markov chain Monte Carlo methods with couplings , 2020, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[26]  B. Efron,et al.  Stein's Estimation Rule and Its Competitors- An Empirical Bayes Approach , 1973 .

[27]  Michael Betancourt,et al.  A Conceptual Introduction to Hamiltonian Monte Carlo , 2017, 1701.02434.

[28]  P. Donnelly,et al.  Inferring coalescence times from DNA sequence data. , 1997, Genetics.

[29]  Christian P Robert,et al.  Molecular Ecology Ressources – subject area: Methodological Advances 1 2 Estimation of demo-genetic model probabilities with Approximate Bayesian 3 Computation using linear discriminant analysis on summary statistics , 2012 .

[30]  S. Coles,et al.  Inference for Stereological Extremes , 2007 .

[31]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[32]  Michael I. Jordan,et al.  Bayesian parameter estimation via variational methods , 2000, Stat. Comput..

[33]  Arnaud Doucet,et al.  Towards scaling up Markov chain Monte Carlo: an adaptive subsampling approach , 2014, ICML.

[34]  Jun S. Liu,et al.  Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes , 1994 .

[35]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[36]  S. Wood Statistical inference for noisy nonlinear ecological dynamic systems , 2010, Nature.

[37]  Gareth W. Peters,et al.  Likelihood-free Bayesian inference for α-stable models , 2012, Comput. Stat. Data Anal..

[38]  P. Diaconis,et al.  The sample size required in importance sampling , 2015, 1511.01437.

[39]  Yee Whye Teh,et al.  Bayesian Learning via Stochastic Gradient Langevin Dynamics , 2011, ICML.

[40]  R. Tweedie,et al.  Exponential Convergence of Langevin Diiusions and Their Discrete Approximations , 1997 .

[41]  Christian P. Robert,et al.  Bayesian computation: a summary of the current state, and samples backwards and forwards , 2015, Statistics and Computing.

[42]  J. Hammersley SIMULATION AND THE MONTE CARLO METHOD , 1982 .

[43]  Rong Chen,et al.  A Theoretical Framework for Sequential Importance Sampling with Resampling , 2001, Sequential Monte Carlo Methods in Practice.

[44]  Jeffrey S. Rosenthal,et al.  Coupling and Ergodicity of Adaptive MCMC , 2007 .

[45]  G. Casella,et al.  Rao-Blackwellisation of sampling schemes , 1996 .

[46]  É. Moulines,et al.  Non-asymptotic convergence analysis for the Unadjusted Langevin Algorithm , 2015, 1507.05021.

[47]  Jiqiang Guo,et al.  Stan: A Probabilistic Programming Language. , 2017, Journal of statistical software.

[48]  Christophe Andrieu,et al.  Establishing some order amongst exact approximations of MCMCs , 2014, 1404.6909.

[49]  D. Balding,et al.  Approximate Bayesian computation in population genetics. , 2002, Genetics.

[50]  Christophe Andrieu,et al.  Model criticism based on likelihood-free inference, with an application to protein network evolution , 2009, Proceedings of the National Academy of Sciences.

[51]  K. Mengersen,et al.  Robustness of ranking and selection rules using generalised g-and-k distributions , 1997 .

[52]  M. Feldman,et al.  Population growth of human Y chromosomes: a study of Y chromosome microsatellites. , 1999, Molecular biology and evolution.

[53]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[54]  Martyn Plummer Cuts in Bayesian graphical models , 2015, Stat. Comput..

[55]  Christian P. Robert,et al.  Componentwise approximate Bayesian computation via Gibbs-like steps , 2019, Biometrika.

[56]  Radford M. Neal MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.

[57]  A. Kennedy,et al.  Hybrid Monte Carlo , 1988 .

[58]  Joseph Fourier,et al.  Approximate Bayesian Computation: a non-parametric perspective , 2013 .

[59]  Christian P. Robert,et al.  Better together? Statistical learning in models made of modules , 2017, 1708.08719.

[60]  J.-M. Marin,et al.  Relevant statistics for Bayesian model choice , 2011, 1110.4700.

[61]  Djc MacKay,et al.  Slice sampling - Discussion , 2003 .

[62]  Geoffrey E. Hinton,et al.  Bayesian Learning for Neural Networks , 1995 .

[63]  R. B. Potts Some generalized order-disorder transformations , 1952, Mathematical Proceedings of the Cambridge Philosophical Society.

[64]  O. Cappé,et al.  Markov Chain Monte Carlo: 10 Years and Still Running! , 2000 .

[65]  Paul Marjoram,et al.  Markov chain Monte Carlo without likelihoods , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[66]  Christian P Robert,et al.  Bayesian computation via empirical likelihood , 2012, Proceedings of the National Academy of Sciences.

[67]  D. Dunson,et al.  The Hastings algorithm at fifty , 2020 .

[68]  David T. Frazier,et al.  Asymptotic properties of approximate Bayesian computation , 2016, Biometrika.

[69]  A. Pettitt,et al.  Marginal likelihood estimation via power posteriors , 2008 .

[70]  A. Futschik,et al.  A Novel Approach for Choosing Summary Statistics in Approximate Bayesian Computation , 2012, Genetics.

[71]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.