Symmetry restoring and ancilla-driven entanglement for ultra-cold spin-1 atoms in a three-site ring

The spin-change dynamics of a model with ultra-cold hyperfine-spin-1 atoms confined in an optical superlattice is discussed. First, the disturbance of the two-site dynamics by coupling the dimer to a spin-1 ancilla is analyzed. When the dimer is coupled to the ancilla, even by a weak coupling, the significant changes in the system’s time-evolution processes are observed. Next, we show that for the two-particle case the total hyperfine-spin-singlet state is generated by exploiting a quadratic Zeeman shift with realistic values of the strength of external magnetic field and evolution period of time. Moreover, even in a weak coupling regime, the proper choice of the additional ancilla–dimer interaction results in generating the wave function which is characteristic of the homogeneous three-site ring. In consequence, such wave function exhibits translational invariance symmetry despite the strong asymmetry of the lattice. Furthermore, we present our proposal for extracting various kinds of maximally entangled states (MES) for three-site spin-1 systems, starting from initial product states. In particular, we show that the type of generated MES can be unambiguously recognized by the measurement performed on the ancilla.

[1]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[2]  T. Sowi'nski,et al.  Ground-state entanglement of spin-1 bosons undergoing superexchange interactions in optical superlattices , 2014, 1406.3756.

[3]  F. Nori,et al.  Tunable quantum dots in monolayer graphene , 2012, 1205.0114.

[4]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[5]  J. Dalibard,et al.  Microwave-induced Fano-Feshbach resonances , 2009, 0909.4633.

[6]  L. Santos,et al.  Field-induced phase transitions of repulsive spin-1 bosons in optical lattices. , 2010, Physical review letters.

[7]  T. Hänsch,et al.  Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms , 2002, Nature.

[8]  Melting of discrete vortices via quantum fluctuations. , 2006, Physical review letters.

[9]  Yaakov S. Weinstein,et al.  Tripartite entanglement witnesses and entanglement sudden death , 2008, 0812.4612.

[10]  J. Dalibard,et al.  Quantum simulations with ultracold quantum gases , 2012, Nature Physics.

[11]  F. Martini,et al.  Experimental Realization of Teleporting an Unknown Pure Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels , 1997, quant-ph/9710013.

[12]  A. Auerbach Interacting electrons and quantum magnetism , 1994 .

[13]  M. Bourennane,et al.  QUANTUM KEY DISTRIBUTION USING MULTILEVEL ENCODING , 2001 .

[14]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[15]  Maciej Lewenstein,et al.  Ultracold Atoms in Optical Lattices: Simulating quantum many-body systems , 2012 .

[16]  M. Koashi,et al.  Generation of maximum spin entanglement induced by a cavity field in quantum-dot systems , 2002, quant-ph/0205030.

[17]  J. Siewert,et al.  Quantifying tripartite entanglement of three-qubit generalized Werner states. , 2012, Physical review letters.

[18]  R. Blatt,et al.  Quantum simulations with trapped ions , 2011, Nature Physics.

[19]  J J García-Ripoll,et al.  Implementation of spin Hamiltonians in optical lattices. , 2004, Physical review letters.

[20]  M. Lewenstein,et al.  Quantum gases in trimerized kagomé lattices , 2005, cond-mat/0506580.

[21]  S. Goyal,et al.  Teleporting photonic qudits using multimode quantum scissors , 2013, Scientific reports.

[22]  Zeilinger,et al.  Violations of local realism by two entangled N-dimensional systems are stronger than for two qubits , 2000, Physical review letters.

[23]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[24]  Current and entanglement in a three-site Bose-Hubbard ring , 2012, 1206.0310.

[25]  M. Lukin,et al.  Spin-exchange interactions of spin-one bosons in optical lattices: Singlet, nematic, and dimerized phases , 2003, cond-mat/0306204.

[26]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[27]  J. Dalibard,et al.  Many-Body Physics with Ultracold Gases , 2007, 0704.3011.

[28]  S. Massar,et al.  Bell inequalities for arbitrarily high-dimensional systems. , 2001, Physical review letters.

[29]  I. McCulloch,et al.  Dimerized and trimerized phases for spin-2 bosons in a one-dimensional optical lattice , 2011, 1105.3773.

[30]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[31]  Optical-state truncation and teleportation of qudits by conditional eight-port interferometry , 2005, quant-ph/0512257.

[32]  Franco Nori,et al.  Sudden vanishing and reappearance of nonclassical effects: General occurrence of finite-time decays and periodic vanishings of nonclassicality and entanglement witnesses , 2011, 1101.4956.

[33]  Immanuel Bloch,et al.  Resonant control of spin dynamics in ultracold quantum gases by microwave dressing , 2006, cond-mat/0601151.

[34]  N. Langford,et al.  Distance measures to compare real and ideal quantum processes (14 pages) , 2004, quant-ph/0408063.

[35]  Jan Soubusta,et al.  Experimental eavesdropping based on optimal quantum cloning. , 2012, Physical review letters.

[36]  Anders Karlsson,et al.  Security of quantum key distribution using d-level systems. , 2001, Physical review letters.

[37]  H Bechmann-Pasquinucci,et al.  Quantum cryptography with 3-state systems. , 2000, Physical review letters.

[38]  Immanuel Bloch,et al.  Precision measurement of spin-dependent interaction strengths for spin-1 and spin-2 87Rb atoms , 2006, cond-mat/0604038.

[39]  S. Yip Dimer state of spin-1 bosons in an optical lattice. , 2003, Physical review letters.

[40]  M. Lewenstein,et al.  Bilinear-biquadratic spin-1 chain undergoing quadratic Zeeman effect , 2011, 1104.5234.

[41]  J. Cirac,et al.  Atomic quantum gases in Kagomé lattices. , 2004, Physical review letters.

[42]  Sahin Kaya Ozdemir,et al.  Teleportation of qubit states through dissipative channels: Conditions for surpassing the no-cloning limit , 2007, 0709.1662.