Organic matter accumulation of the Upper Triassic Ma'antang shales in the Longmenshan Foreland Basin (western Sichuan, China)

[1]  Sokphea Young,et al.  Differential sedimentary mechanisms of Upper Ordovician-Lower Silurian shale in southern Sichuan Basin, China , 2022, Marine and Petroleum Geology.

[2]  W. Wang,et al.  Geochemical and detrital zircon age constraints on Meso- to Neoproterozoic sedimentary basins in the southern Yangtze Block: Implications on Proterozoic geodynamics of South China and Rodinia configuration , 2022, Precambrian Research.

[3]  G. Bhat,et al.  An assessment of the source potential and reservoir characterisation for tight gas exploration in the Subathu Formation shale, Himalayan Foreland Basin, northwestern India , 2022, Journal of Asian Earth Sciences.

[4]  J. Hower,et al.  Mineralogy and geochemistry of the Late Triassic coal from the Caotang mine, northeastern Sichuan Basin, China, with emphasis on the enrichment of the critical element lithium , 2021, Ore Geology Reviews.

[5]  Haijun Song,et al.  Phanerozoic paleotemperatures: The earth’s changing climate during the last 540 million years , 2021, Earth-Science Reviews.

[6]  B. Deng,et al.  Tectonic evolution of the Sichuan Basin, Southwest China , 2021 .

[7]  J. Ogg,et al.  Global carbon cycle perturbations triggered by volatile volcanism and ecosystem responses during the Carnian Pluvial Episode (late Triassic) , 2020 .

[8]  R. Zhu,et al.  Paleoenvironment and Organic Matter Accumulation of the Upper Ordovician-Lower Silurian, in Upper Yangtze Region, South China: Constraints from Multiple Geochemical Proxies , 2020, Energies.

[9]  M. Franceschi,et al.  Synchronized changes in shallow water carbonate production during the Carnian Pluvial Episode (Late Triassic) throughout Tethys , 2020 .

[10]  I. Jarvis,et al.  Raman spectroscopy as a tool to determine the thermal maturity of organic matter: Application to sedimentary, metamorphic and structural geology , 2019, Earth-Science Reviews.

[11]  T. Deng,et al.  Geochemical characteristics and organic matter enrichment mechanism of black shale in the Upper Triassic Xujiahe Formation in the Sichuan basin: Implications for paleoweathering, provenance and tectonic setting , 2019, Marine and Petroleum Geology.

[12]  Wen-Xin Yang,et al.  Formation of the Late Triassic western Sichuan foreland basin of the Qinling Orogenic Belt, SW China: Sedimentary and geochronological constraints from the Xujiahe Formation , 2019, Journal of Asian Earth Sciences.

[13]  Dongxia Chen,et al.  Climate and tectonic-driven deposition of sandwiched continental shale units: New insights from petrology, geochemistry, and integrated provenance analyses (the western Sichuan subsiding Basin, Southwest China) , 2019, International Journal of Coal Geology.

[14]  H. Tian,et al.  Climate change induced eutrophication of cold-water lake in an ecologically fragile nature reserve. , 2019, Journal of Environmental Science.

[15]  Wei Wei,et al.  Identifying marine incursions into the Paleogene Bohai Bay Basin lake system in northeastern China , 2018, International Journal of Coal Geology.

[16]  G. Stanley,et al.  Paleoecological Response of Corals to the End-Triassic Mass Extinction: An Integrational Analysis , 2018, Journal of Earth Science.

[17]  M. Rogora,et al.  Could the extreme meteorological events in Lake Maggiore watershed determine a climate-driven eutrophication process? , 2018, Hydrobiologia.

[18]  Miguel Ezpeleta,et al.  Deep faunistic turnovers preceded the rise of dinosaurs in southwestern Pangaea , 2017, Nature Ecology & Evolution.

[19]  A. M. Michalak,et al.  Eutrophication will increase during the 21st century as a result of precipitation changes , 2017, Science.

[20]  L. Krystyn,et al.  Demise of Late Triassic sponge mounds along the northwestern margin of the Yangtze Block, South China: Related to the Carnian Pluvial Phase? , 2017 .

[21]  G. Reichart,et al.  Definition of new trace-metal proxies for the controls on organic matter enrichment in marine sediments based on Mn, Co, Mo and Cd concentrations , 2016 .

[22]  S. Grasby,et al.  Climate warming, euxinia and carbon isotope perturbations during the Carnian (Triassic) Crisis in South China , 2016 .

[23]  R. Tolosana-Delgado,et al.  Sediment generation in humid Mediterranean setting: Grain-size and source-rock control on sediment geochemistry and mineralogy (Sila Massif, Calabria) , 2016 .

[24]  S. Verma,et al.  Geochemical discrimination of siliciclastic sediments from active and passive margin settings , 2016 .

[25]  R. Irmis,et al.  The precise temporal calibration of dinosaur origins , 2015, Proceedings of the National Academy of Sciences.

[26]  J. Disnar,et al.  Guidelines for Rock-Eval analysis of recent marine sediments , 2015 .

[27]  L. Shao,et al.  Linked sequence stratigraphy and tectonics in the Sichuan continental foreland basin, Upper Triassic Xujiahe Formation, southwest China , 2014 .

[28]  Junxing Cao,et al.  Migration of the carbonate ramp and sponge buildup driven by the orogenic wedge advance in the early stage (Carnian) of the Longmen Shan foreland basin, China , 2014 .

[29]  S. Verma,et al.  New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins , 2013 .

[30]  V. Karakitsios Western Greece and Ionian Sea petroleum systems , 2013 .

[31]  J. Lavé,et al.  Increasing chemical weathering in the Himalayan system since the Last Glacial Maximum , 2013 .

[32]  I. Villa,et al.  Weathering geochemistry and Sr‐Nd fingerprints of equatorial upper Nile and Congo muds , 2013 .

[33]  Li Jiang-ha A study of the distribution of source rocks in Phanerozoic based on Paleoplate reconstruction , 2013 .

[34]  Shouye Yang,et al.  Does chemical index of alteration (CIA) reflect silicate weathering and monsoonal climate in the Changjiang River basin? , 2012 .

[35]  F. Ettensohn,et al.  Large-scale Tectonic Controls on the Origin of Paleozoic Dark-shale Source-rock Basins: Examples from the Appalachian Foreland Basin, Eastern United States , 2012 .

[36]  W. Landman Climate change 2007: the physical science basis , 2010 .

[37]  M. Stefani,et al.  The changing climate framework and depositional dynamics of Triassic carbonate platforms from the Dolomites , 2010 .

[38]  S. Manya,et al.  Geochemistry of fine-grained clastic sedimentary rocks of the Neoproterozoic Ikorongo Group, NE Tanzania: Implications for provenance and source rock weathering , 2008 .

[39]  E. Ingall,et al.  Sedimentary Corg:P ratios, paleocean ventilation, and Phanerozoic atmospheric pO2 , 2007 .

[40]  K. Föllmi,et al.  The Cenomanian/Turonian anoxic event at the Bonarelli Level in Italy and Spain: enhanced productivity and/or better preservation? , 2007 .

[41]  D. Williams,et al.  Testing the reliability of discrimination diagrams for determining the tectonic depositional environment of ancient sedimentary basins , 2007 .

[42]  L. Krystyn,et al.  A Tethys-wide mid-Carnian (Upper Triassic) carbonate productivity crisis: Evidence for the Alpine Reingraben Event from Spiti (Indian Himalaya)? , 2007 .

[43]  J. Golonka Late Triassic and Early Jurassic palaeogeography of the world , 2007 .

[44]  O. Lacombe,et al.  Lithospheric bulge in the West Taiwan Basin , 2006 .

[45]  T. Lyons,et al.  Trace metals as paleoredox and paleoproductivity proxies: An update , 2006 .

[46]  H. Brumsack The trace metal content of recent organic carbon-rich sediments; implications for Cretaceous black shale formation , 2006 .

[47]  S. Verma,et al.  Critical evaluation of six tectonic setting discrimination diagrams using geochemical data of Neogene sediments from known tectonic settings , 2005 .

[48]  T. Lyons,et al.  Enhanced trapping of molybdenum by sulfurized marine organic matter of marine origin in Mesozoic limestones and shales , 2004 .

[49]  J. B. Maynard,et al.  Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems , 2004 .

[50]  A. Anbar Molybdenum Stable Isotopes: Observations, Interpretations and Directions , 2004 .

[51]  P. Allen,et al.  Evolution of the Longmen Shan Foreland Basin (Western Sichuan, China) during the Late Triassic Indosinian Orogeny , 2003 .

[52]  A. Knoll,et al.  Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge? , 2002, Science.

[53]  D. Lowe,et al.  The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States , 1995 .

[54]  L. Kump,et al.  Lithologic and climatologic controls of river chemistry , 1994 .

[55]  G. M. Young,et al.  Formation and Diagenesis of Weathering Profiles , 1989, The Journal of Geology.

[56]  B. Roser,et al.  Determination of Tectonic Setting of Sandstone-Mudstone Suites Using SiO2 Content and K2O/Na2O Ratio , 1986, The Journal of Geology.

[57]  M. Bhatia Plate Tectonics and Geochemical Composition of Sandstones , 1983, The Journal of Geology.