Discrete stochastic processes, replicator and Fokker-Planck equations of coevolutionary dynamics in finite and infinite populations

Finite-size fluctuations in coevolutionary dynamics arise in models of biological as well as of social and economic systems. This brief tutorial review surveys a systematic approach starting from a stochastic process discrete both in time and state. The limit $N\to \infty$ of an infinite population can be considered explicitly, generally leading to a replicator-type equation in zero order, and to a Fokker-Planck-type equation in first order in $1/\sqrt{N}$. Consequences and relations to some previous approaches are outlined.

[1]  B. Sinervo,et al.  Polygyny, mate-guarding, and posthumous fertilization as alternative male mating strategies. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[2]  J. Nash NON-COOPERATIVE GAMES , 1951, Classics in Game Theory.

[3]  M. Feldman,et al.  Local dispersal promotes biodiversity in a real-life game of rock–paper–scissors , 2002, Nature.

[4]  S. Wright Evolution in mendelian populations , 1931 .

[5]  Katarzyna Sznajd-Weron,et al.  Opinion evolution in closed community , 2000, cond-mat/0101130.

[6]  R. Lewontin ‘The Selfish Gene’ , 1977, Nature.

[7]  J. M. Smith,et al.  The Logic of Animal Conflict , 1973, Nature.

[8]  Henrik Jeldtoft Jensen,et al.  Emergence of species and punctuated equilibrium in the Tangle Nature model of biological evolution , 2004 .

[9]  G. Szabó,et al.  Evolutionary games on graphs , 2006, cond-mat/0607344.

[10]  John M McNamara,et al.  A Unifying Framework for Metapopulation Dynamics , 2002, The American Naturalist.

[11]  S. Bornholdt,et al.  Coevolutionary games on networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  R. A. Fisher,et al.  The Genetical Theory of Natural Selection , 1931 .

[13]  Daniel B. Neill,et al.  Evolutionary stability for large populations. , 2004, Journal of theoretical biology.

[14]  Dirk Helbing,et al.  A stochastic behavioral model and a ‘Microscopic’ foundation of evolutionary game theory , 1996, cond-mat/9805340.

[15]  S. Gould,et al.  Punctuated equilibria: an alternative to phyletic gradualism , 1972 .

[16]  P. Taylor,et al.  Evolutionarily Stable Strategies and Game Dynamics , 1978 .

[17]  J Hofbauer,et al.  The "battle of the sexes": a genetic model with limit cycle behavior. , 1987, Theoretical population biology.

[18]  E. Rowland Theory of Games and Economic Behavior , 1946, Nature.

[19]  Josef Hofbauer,et al.  Sophisticated imitation in cyclic games , 2000 .

[20]  B. Drossel Biological evolution and statistical physics , 2001, cond-mat/0101409.

[21]  Charles C. Elton Animal Ecology , 1927, Nature.

[22]  Martin A. Nowak,et al.  Evolutionary dynamics on graphs , 2005, Nature.

[23]  Josef Hofbauer,et al.  Evolutionary Games and Population Dynamics , 1998 .

[24]  C. Hauert,et al.  Coevolutionary dynamics: from finite to infinite populations. , 2004, Physical review letters.

[25]  S Redner,et al.  Evolutionary dynamics on degree-heterogeneous graphs. , 2006, Physical review letters.

[26]  G Szabó,et al.  Vortex dynamics in a three-state model under cyclic dominance. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[27]  E. Zeeman Dynamics of the evolution of animal conflicts , 1981 .

[28]  P. Taylor,et al.  Fitness and evolutionary stability in game theoretic models of finite populations , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[29]  D. Fudenberg,et al.  Emergence of cooperation and evolutionary stability in finite populations , 2004, Nature.

[30]  Erwin Frey,et al.  Coexistence versus extinction in the stochastic cyclic Lotka-Volterra model. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  R. A. Fisher,et al.  The Genetical Theory of Natural Selection , 1931 .

[32]  A V Herz,et al.  Collective phenomena in spatially extended evolutionary games. , 1994, Journal of theoretical biology.

[33]  G. Szabó,et al.  Evolutionary prisoner's dilemma game on a square lattice , 1997, cond-mat/9710096.

[34]  M. Baake,et al.  Ising quantum chain is equivalent to a model of biological evolution , 1997 .

[35]  L. Imhof,et al.  Stochasticity and evolutionary stability. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  L. Blume The Statistical Mechanics of Strategic Interaction , 1993 .

[37]  M. Nowak,et al.  Stochastic dynamics of invasion and fixation. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  Bak,et al.  Punctuated equilibrium and criticality in a simple model of evolution. , 1993, Physical review letters.

[39]  Jan Alboszta,et al.  Stability of evolutionarily stable strategies in discrete replicator dynamics with time delay. , 2004, Journal of theoretical biology.

[40]  Attila Szolnoki,et al.  Vertex dynamics during domain growth in three-state models. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  M. Nowak,et al.  Evolutionary game dynamics with non-uniform interaction rates. , 2006, Theoretical population biology.

[42]  H. Ohtsuki,et al.  A simple rule for the evolution of cooperation on graphs and social networks , 2006, Nature.

[43]  A. Traulsen,et al.  Non-Gaussian fluctuations arising from finite populations: Exact results for the evolutionary Moran process. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  Yu. M. Pismak Solution of the Master Equation for Bak-Sneppen Model of Biological Evolution in Finite Ecosystem , 1996 .

[45]  Jens Christian Claussen,et al.  Drift reversal in asymmetric coevolutionary conflicts: influence of microscopic processes and population size , 2007, 0712.4224.

[46]  Jacek Miekisz,et al.  Evolutionary Game Theory and Population Dynamics , 2007, q-bio/0703062.

[47]  Arne Traulsen,et al.  Cyclic dominance and biodiversity in well-mixed populations. , 2008, Physical review letters.

[48]  G. Szabó,et al.  Phase diagrams for an evolutionary prisoner's dilemma game on two-dimensional lattices. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  Arne Traulsen,et al.  Stochastic payoff evaluation increases the temperature of selection. , 2007, Journal of theoretical biology.

[50]  Drew Fudenberg,et al.  Imitation Processes with Small Mutations , 2004, J. Econ. Theory.

[51]  W. Hamilton,et al.  The evolution of cooperation. , 1984, Science.

[52]  M. Nowak,et al.  Evolutionary games and spatial chaos , 1992, Nature.

[53]  Dirk Helbing,et al.  A Mathematical Model for Attitude Formation By Pair Interactions , 1992, cond-mat/9805145.

[54]  Attila Szolnoki,et al.  Rock-scissors-paper game on regular small-world networks , 2004 .

[55]  Christoph Bandt,et al.  The Discrete Evolution Model of Bak and Sneppen is Conjugate to the Classical Contact Process , 2005 .

[56]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[57]  K Sigmund,et al.  A note on evolutionary stable strategies and game dynamics. , 1979, Journal of theoretical biology.

[58]  K. Lindgren,et al.  Evolutionary dynamics of spatial games , 1994 .

[59]  Arne Traulsen,et al.  Similarity-based cooperation and spatial segregation. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[60]  Arne Traulsen,et al.  Coevolutionary dynamics in large, but finite populations. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[61]  S. Wright,et al.  Evolution in Mendelian Populations. , 1931, Genetics.

[62]  B. Sinervo,et al.  The rock–paper–scissors game and the evolution of alternative male strategies , 1996, Nature.

[63]  Margaret A. Riley,et al.  Antibiotic-mediated antagonism leads to a bacterial game of rock–paper–scissors in vivo , 2004, Nature.

[64]  Drew Fudenberg,et al.  Evolutionary game dynamics in finite populations , 2004, Bulletin of mathematical biology.

[65]  T. Czárán,et al.  Chemical warfare between microbes promotes biodiversity , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[66]  A. W. F. Edwards,et al.  The statistical processes of evolutionary theory , 1963 .

[67]  C. Hauert,et al.  Game theory and physics , 2005 .

[68]  John Wakeley,et al.  A diffusion approximation for selection and drift in a subdivided population. , 2003, Genetics.

[69]  E. C. Zeeman,et al.  Population dynamics from game theory , 1980 .