Hanf Numbers and Presentation Theorems in AECs

We prove that a strongly compact cardinal is an upper bound for a Hanf number for amalgamation, etc. in AECs using both semantic and syntactic methods. To syntactically prove non-disjoint amalgamation, a different presentation theorem than Shelah's is needed. This relational presentation theorem has the added advantage of being {\it functorial}, which allows the transfer of amalgamation.

[1]  Will Boney,et al.  Large Cardinal Axioms from Tameness in AECs , 2015 .

[2]  Israel Kleiner,et al.  Modern Algebra and the Rise of Mathematical Structures , 2001 .

[3]  Nicholas Bourbaki,et al.  The Architecture of Mathematics , 1950 .

[4]  B. Poizat A Course in Model Theory , 2000 .

[5]  AMALGAMATION , 1963 .

[6]  Saharon Shelah Categoricity for Abstract Classes with Amalgamation , 1999, Ann. Pure Appl. Log..

[7]  Ioannis Souldatos,et al.  Complete $\mathcal{L}_{\omega_1,\omega}$-Sentences with Maximal Models in Multiple Cardinalities , 2015 .

[8]  Saharon Shelah,et al.  The amalgamation spectrum , 2009, The Journal of Symbolic Logic.

[9]  Ioannis Souldatos Characterizing the powerset by a complete (Scott) sentence , 2013 .

[10]  H. Gaifman,et al.  Symbolic Logic , 1881, Nature.

[11]  Dana,et al.  JSL volume 88 issue 4 Cover and Front matter , 1983, The Journal of Symbolic Logic.

[12]  Rami P. Grossberg,et al.  Galois-stability for Tame Abstract Elementary Classes , 2006, J. Math. Log..

[13]  John T. Baldwin,et al.  Categoricity, amalgamation, and tameness , 2009 .

[14]  John T. Baldwin,et al.  The joint embedding property and maximal models , 2016, Arch. Math. Log..

[15]  Leo Corry,et al.  Nicolas Bourbaki and the concept of mathematical structure , 1992, Synthese.

[16]  David W. Kueker Abstract elementary classes and infinitary logics , 2008, Ann. Pure Appl. Log..

[17]  Saharon Shelah,et al.  On the Existence of Atomic Models , 1993, J. Symb. Log..

[18]  A. Troelstra,et al.  STUDIES IN LOGIC. , 1883, Science.

[19]  William Boos Infinitary Compactness without Strong Inaccessibility , 1976, J. Symb. Log..

[20]  Charles S. Peirce,et al.  Studies in Logic , 2008 .

[21]  Michael Makkai Categoricity of theories in L_ , with k a compact cardinal , 1990 .

[22]  Wilfrid Hodges,et al.  Model Theory: The existential case , 1993 .

[23]  Daniel J. Velleman American Mathematical Monthly , 2010 .

[24]  Tapani Hyttinen,et al.  Independence in finitary abstract elementary classes , 2006, Ann. Pure Appl. Log..

[25]  John T. Baldwin Abstract elementary classes , 2009 .

[26]  S. Shelah Maximal failures of sequence locality in a.e.c , 2009, 0903.3614.

[27]  Andrew Brooke-Taylor,et al.  Accessible images revisited , 2015, 1506.01986.

[28]  James E. Baumgartner The Hanf Number for Complete L omega1, omega -Sentences (Without GCH) , 1974, J. Symb. Log..

[29]  Will Boney,et al.  TAMENESS FROM LARGE CARDINAL AXIOMS , 2013, The Journal of Symbolic Logic.

[30]  Louise Poissant Part I , 1996, Leonardo.

[31]  Michael Morley OMITTING CLASSES OF ELEMENTS , 2014 .

[32]  Greg Hjorth Knight's Model, its automorphism Group, and Characterizing the uncountable Cardinals , 2002, J. Math. Log..

[33]  Saharon Shelah,et al.  Classification Theory for Abstract Elementary Classes , 2009 .

[34]  Greg Hjorth A Note on Counterexamples to the Vaught Conjecture , 2007, Notre Dame J. Formal Log..

[35]  S. Griffis EDITOR , 1997, Journal of Navigation.

[36]  B. Jónsson Universal relational systems , 1956 .

[37]  Saharon Shelah Borel sets with large squares , 1998 .

[38]  S. Shelah,et al.  Annals of Pure and Applied Logic , 1991 .

[39]  John T. Baldwin,et al.  Three red herrings around Vaught’s conjecture , 2015 .

[40]  Saharon Shelah,et al.  Categoricity overP for first orderT or categoricity forϕ ∈Lω1ω can stop at ℵk while holding for ℵ0, ..., ℵk−1 , 1990 .

[41]  J. Kennedy On Formalism Freeness: Implementing Gödel's 1946 Princeton Bicentennial Lecture , 2013, The Bulletin of Symbolic Logic.

[42]  J. Baldwin,et al.  A ‘natural’ theory without a prime model , 1973 .

[43]  Bjarni Jónsson,et al.  Homogeneous Universal Relational Systems. , 1960 .

[44]  Jerome Malitz The hanf number for complete sentences , 1968 .

[45]  Saharon Shelah,et al.  Categoricity of Theories in Lk omega, with k a Compact Ordinal , 1990, Annals of Pure and Applied Logic.

[46]  Alistair H. Lachlan,et al.  aleph0-Categorical, aleph0-stable structures , 1985, Annals of Pure and Applied Logic.

[47]  Chen C. Chang,et al.  Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .