Rapid strain accumulation on the Ashkabad fault (Turkmenistan) from atmosphere‐corrected InSAR

[1] We have measured interseismic deformation across the Ashkabad strike-slip fault using 13 Envisat interferograms covering a total effective timespan of ∼30 years. Atmospheric contributions to phase delay are significant and variable due to the close proximity of the Caspian Sea. In order to retrieve the pattern of strain accumulation, we show it is necessary to use data from Envisat's Medium-Resolution Imaging Spectrometer (MERIS) instrument, as well as numerical weather model outputs from the European Centre for Medium-Range Weather Forecasts (ECMWF), to correct interferograms for differences in water vapor and atmospheric pressure, respectively. This has enabled us to robustly estimate the slip rate and locking depth for the Ashkabad fault using a simple elastic dislocation model. Our data are consistent with a slip rate of 5–12 mm/yr below a locking depth of 5.5–17 km for the Ashkabad fault, and synthetic tests support the magnitude of the uncertainties on these estimates. Our estimate of slip rate is 1.25–6 times higher than some previous geodetic estimates, with implications for both seismic hazard and regional tectonics, in particular supporting fast relative motion between the South Caspian Block and Eurasia. This result reinforces the importance of correcting for atmospheric contributions to interferometric phase for small strain measurements. We also attempt to validate a recent method for atmospheric correction based on ECMWF ERA-Interim model outputs alone and find that this technique does not work satisfactorily for this region when compared to the independent MERIS estimates.

[1]  Marian Werner,et al.  Shuttle Radar Topography Mission (SRTM) Mission Overview , 2001 .

[2]  J. Jackson,et al.  Strike-slip faulting, rotation, and along-strike elongation in the Kopeh Dagh mountains, NE Iran , 2006 .

[3]  Richard B. Langley,et al.  Comparison of Measurements of Atmospheric Wet Delay by Radiosonde, Water Vapor Radiometer, GPS, and VLBI , 2001 .

[4]  E. Shabanian,et al.  New tectonic configuration in NE Iran: Active strike‐slip faulting between the Kopeh Dagh and Binalud mountains , 2009 .

[5]  Yehuda Bock,et al.  Integrated satellite interferometry: Tropospheric noise, GPS estimates and implications for interferometric synthetic aperture radar products , 1998 .

[6]  J. Jackson,et al.  Extrusion tectonics and subduction in the eastern South Caspian region since 10 Ma: REPLY , 2008 .

[7]  M. Simons,et al.  A multiscale approach to estimating topographically correlated propagation delays in radar interferograms , 2010 .

[8]  D. Ramon,et al.  The surface pressure retrieval in the MERIS O/sub 2/ absorption: validation and potential improvements , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[9]  Walter H. F. Smith,et al.  Gridding with continuous curvature splines in tension , 1990 .

[10]  F. Tavakoli Present-day deformation and kinematics of the active faults observed by GPS in the Zagros and east of Iran , 2007 .

[11]  N. Lyberis,et al.  Oblique to Orthogonal Convergence Across the Turan Block in the Post-Miocene , 1999 .

[12]  Jan-Peter Muller,et al.  Interferometric synthetic aperture radar (InSAR) atmospheric correction: GPS, moderate resolution Imaging spectroradiometer (MODIS), and InSAR integration , 2005 .

[13]  Min Zhu,et al.  High-Resolution Forecast Models of Water Vapor Over Mountains: Comparison With MERIS and Meteosat Data , 2007, IEEE Geoscience and Remote Sensing Letters.

[14]  M. Doin,et al.  Ground motion measurement in the Lake Mead area, Nevada, by differential synthetic aperture radar interferometry time series analysis: Probing the lithosphere rheological structure , 2007 .

[15]  W. Rossow,et al.  The International Satellite Cloud Climatology Project (ISCCP): The First Project of the World Climate Research Programme , 1983 .

[16]  Vladimir G. Trifonov,et al.  Late Quaternary tectonic movements of western and central Asia , 1978 .

[17]  Z. W. Li,et al.  Interpolating atmospheric water vapor delay by incorporating terrain elevation information , 2011 .

[18]  J. Muller,et al.  Interferometric synthetic aperture radar atmospheric correction: GPS topography‐dependent turbulence model , 2006 .

[19]  Walter H. F. Smith,et al.  New, improved version of generic mapping tools released , 1998 .

[20]  James Jackson,et al.  Active tectonics of the South Caspian Basin , 2001 .

[21]  Rene Preusker,et al.  Advanced InSAR atmospheric correction: MERIS/MODIS combination and stacked water vapour models , 2009 .

[22]  J. E. Jackson A User's Guide to Principal Components , 1991 .

[23]  Jan-Peter Muller,et al.  Comparison of precipitable water vapor derived from radiosonde, GPS, and Moderate‐Resolution Imaging Spectroradiometer measurements , 2003 .

[24]  Steven Businger,et al.  GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water , 1994 .

[25]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[26]  T. Wright,et al.  Measurement of interseismic strain accumulation across the North Anatolian Fault by satellite radar interferometry , 2001 .

[27]  Jan-Peter Muller,et al.  Interferometric synthetic aperture radar atmospheric correction: Medium Resolution Imaging Spectrometer and Advanced Synthetic Aperture Radar integration , 2006 .

[28]  Frank H. Webb,et al.  Neutral atmospheric delay in interferometric synthetic aperture radar applications: Statistical description and mitigation , 2003 .

[29]  Ralf Bennartz,et al.  Retrieval of columnar water vapour over land from backscattered solar radiation using the Medium Resolution Imaging Spectrometer , 2001 .

[30]  R. Hanssen Radar Interferometry: Data Interpretation and Error Analysis , 2001 .

[31]  J. Jackson,et al.  Active tectonics of the Turkish‐Iranian Plateau , 2006 .

[32]  Nicolas Le Moigne,et al.  GPS and gravity constraints on continental deformation in the Alborz mountain range, Iran , 2010 .

[33]  P. Rosen,et al.  Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps , 1997 .

[34]  P. Molnar,et al.  Major intracontinental strike-slip faults and contrasts in lithospheric strength , 2010 .

[35]  Ian Parsons,et al.  Surface deformation due to shear and tensile faults in a half-space , 1986 .

[36]  Tim J. Wright,et al.  Interseismic slip rate of the northwestern Xianshuihe fault from InSAR data , 2009 .

[37]  I. Shapiro,et al.  Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length , 1985 .

[38]  Tim J. Wright,et al.  InSAR slip rate determination on the Altyn Tagh Fault, northern Tibet, in the presence of topographically correlated atmospheric delays , 2008 .

[39]  M. Khatib,et al.  Late Cenozoic volcanism and rates of active faulting in eastern Iran , 2009 .

[40]  D. McKenzie Active Tectonics of the Mediterranean Region , 1972 .

[41]  Howard A. Zebker,et al.  Correction for interferometric synthetic aperture radar atmospheric phase artifacts using time series of zenith wet delay observations from a GPS network , 2006 .

[42]  David A. Seal,et al.  The Shuttle Radar Topography Mission , 2007 .

[43]  K. Feigl,et al.  Radar interferometry and its application to changes in the Earth's surface , 1998 .

[44]  James Jackson,et al.  Active tectonics of the Alpine—Himalayan Belt between western Turkey and Pakistan , 1984 .

[45]  P. Rosen,et al.  Updated repeat orbit interferometry package released , 2004 .

[46]  J. Lavergnat,et al.  A model for the tropospheric excess path length of radio waves from surface meteorological measurements , 1988 .

[47]  D. McKenzie,et al.  Plate Tectonics of the Mediterranean Region , 1970, Nature.

[48]  Jan-Peter Muller,et al.  Assessment of the potential of MERIS near‐infrared water vapour products to correct ASAR interferometric measurements , 2006 .

[49]  J. C. Savage,et al.  Geodetic determination of relative plate motion in central California , 1973 .

[50]  Marie-Pierre Doin,et al.  Corrections of stratified tropospheric delays in SAR interferometry: Validation with global atmospheric models , 2009 .

[51]  J. Tchalenko Seismicity and structure of the Kopet Dagh (Iran, U. S. S. R.) , 1975, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[52]  Romain Jolivet,et al.  Thin‐plate modeling of interseismic deformation and asymmetry across the Altyn Tagh fault zone , 2008 .

[53]  T. Wright,et al.  Multi-interferogram method for measuring interseismic deformation: Denali Fault, Alaska , 2007 .

[54]  T. Herring,et al.  GPS Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System , 1992 .

[55]  Peter J. Clarke,et al.  Atmospheric models, GPS and InSAR measurements of the tropospheric water vapour field over Mount Etna , 2002 .

[56]  Marie-Pierre Doin,et al.  Systematic InSAR tropospheric phase delay corrections from global meteorological reanalysis data , 2011 .

[57]  Frederic Masson,et al.  Present‐day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman , 2004 .

[58]  C. Werner,et al.  Radar interferogram filtering for geophysical applications , 1998 .

[59]  J. Edward Jackson,et al.  A User's Guide to Principal Components: Jackson/User's Guide to Principal Components , 2004 .

[60]  J. Avouac,et al.  Tropospheric phase delay in interferometric synthetic aperture radar estimated from meteorological model and multispectral imagery , 2007 .

[61]  F. Masson,et al.  FAST TRACK PAPER: Large-scale velocity field and strain tensor in Iran inferred from GPS measurements: new insight for the present-day deformation pattern within NE Iran , 2007 .

[62]  Thomas A. Hennig,et al.  The Shuttle Radar Topography Mission , 2001, Digital Earth Moving.

[63]  Manoochehr Shirzaei,et al.  Topography correlated atmospheric delay correction in radar interferometry using wavelet transforms , 2012 .

[64]  Göran Ekström,et al.  The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes , 2012 .