A coordination architecture for spacecraft formation control

This paper addresses the problem of coordinating multiple spacecraft to fly in tightly controlled formations. The main contribution of the paper is to introduce a coordination architecture that subsumes leader-following, behavioral, and virtual-structure approaches to the multiagent coordination problem. The architecture is illustrated through a detailed application of the ideas to the problem of synthesizing a multiple spacecraft interferometer in deep space.

[1]  Christopher J. Scolese,et al.  Field of view location and formation flying for polar orbiting missions , 1991 .

[2]  F. Y. Hadaegh,et al.  Fuel optimized rotation for satellite formations in free space , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[3]  Joel W. Burdick,et al.  Asymptotic stabilization of multiple nonholonomic mobile robots forming group formations , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[4]  S. Sastry,et al.  Hybrid Control in Air Traac Management Systems , 1995 .

[5]  P. Wang,et al.  Coordination and control of multiple microspacecraft moving in formation , 1996 .

[6]  Christopher Geyer The Attitude Control Problem , 2022 .

[7]  Andrew G. Sparks,et al.  Spacecraft formation flying: dynamics and control , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[8]  Wei Kang,et al.  Formation control of autonomous agents in 3D workspace , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[9]  Pravin Varaiya,et al.  Smart cars on smart roads: problems of control , 1991, IEEE Trans. Autom. Control..

[10]  Paul Keng-Chieh Wang Navigation strategies for multiple autonomous mobile robots moving in formation , 1991, J. Field Robotics.

[11]  P. Wang,et al.  Synchronized Formation Rotation and Attitude Control of Multiple Free-Flying Spacecraft , 1997 .

[12]  Charles A. Desoer,et al.  Control of interconnected nonlinear dynamical systems: the platoon problem , 1992 .

[13]  E. Feron,et al.  Hierarchical control of small autonomous helicopters , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[14]  L Howarth,et al.  Principles of Dynamics , 1964 .

[15]  Malcolm D. Shuster Survey of attitude representations , 1993 .

[16]  Kar-Han Tan,et al.  High Precision Formation Control of Mobile Robots Using Virtual Structures , 1997, Auton. Robots.

[17]  C. McInnes Autonomous ring formation for a planar constellation of satellites , 1995 .

[18]  Vikram Kapila,et al.  Adaptive Nonlinear Control of Multiple Spacecraft Formation Flying , 2000 .

[19]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[20]  Mark R. Anderson,et al.  FORMATION FLIGHT AS A COOPERATIVE GAME , 1998 .

[21]  Kar-Han Tan,et al.  Virtual structures for high-precision cooperative mobile robotic control , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[22]  Xiaoping Yun,et al.  Line and circle formation of distributed physical mobile robots , 1997 .

[23]  Xiaoping Yun,et al.  Line and circle formation of distributed physical mobile robots , 1997, J. Field Robotics.

[24]  K. Lau,et al.  The New Millennium separated spacecraft interferometer , 1997 .

[25]  M. Shuster A survey of attitude representation , 1993 .

[26]  K. Lau,et al.  AN INNOVATIVE DEEP SPACE APPLICATION OF GPS TECHNOLOGY FOR FORMATION FLYING SPACECRAFT , 1996 .

[27]  J. W. Humberston Classical mechanics , 1980, Nature.

[28]  Tucker R. Balch,et al.  Behavior-based formation control for multirobot teams , 1998, IEEE Trans. Robotics Autom..

[29]  George J. Pappas,et al.  Hybrid control in air traffic management systems , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[30]  Alexander B. Yakovlev,et al.  Introductory Functional Analysis , 2002 .

[31]  R. Beard,et al.  Constellation Templates: An Approach to Autonomous Formation Flying , 1998 .

[32]  Vijay Kumar,et al.  Controlling formations of multiple mobile robots , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[33]  P. Y. Willems,et al.  SPACECRAFT DYNAMICS AND CONTROL , 1981 .

[34]  Yuri Ulybyshev Long-Term Formation Keeping of Satellite Constellation Using Linear-Quadratic Controller , 1998 .

[35]  Vijay Kumar,et al.  Decentralized control of cooperating mobile manipulators , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[36]  C. P.K.,et al.  MINIMUM-FUEL FORMATION RECONFIGURATION OF MULTIPLE FREE-FLYING SPACECRAFT , 2001 .

[37]  Randal Beard Architecture and Algorithms for Constellation Control , 1998 .

[38]  Claude Samson,et al.  Robot Control: The Task Function Approach , 1991 .

[39]  Timothy W. McLain,et al.  Fuel equalized retargeting for separated spacecraft interferometry , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[40]  David Quinn,et al.  A universal 3-D method for controlling the relative motion of multiple spacecraft in any orbit , 1998 .

[41]  J. Y. S. Luh,et al.  Coordination and control of a group of small mobile robots , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[42]  Timothy W. McLain,et al.  Fuel Optimization for Constrained Rotation of Spacecraft Formations , 2000 .

[43]  Christopher J. Scolese,et al.  Considerations on formation flying separations for earth observing satellite missions , 1992 .

[44]  Fred Y. Hadaegh,et al.  Adaptive Control of Formation Flying Spacecraft for Interferometry , 1998 .

[45]  F. Hadaegh,et al.  Minimum-Fuel Formation Reconfiguration of Multiple Free-Flying Spacecraft , 1999 .