Topography of upper mantle seismic discontinuities beneath the North Atlantic: The Azores, Canary and Cape Verde plumes

[1]  K. Bullen Compressibility-Pressure Hypothesis and the Earth's Interior , 1949 .

[2]  R. E. Sheriff,et al.  Nomogram for Fresnel-zone calculation , 1980 .

[3]  E. Ito,et al.  Postspinel transformations in the system Mg2SiO4‐Fe2SiO4 and some geophysical implications , 1989 .

[4]  T. Katsura,et al.  The system Mg2SiO4‐Fe2SiO4 at high pressures and temperatures: Precise determination of stabilities of olivine, modified spinel, and spinel , 1989 .

[5]  Norman H. Sleep,et al.  Hotspots and Mantle Plumes' Some Phenomenology , 1990 .

[6]  J. Schilling Fluxes and excess temperatures of mantle plumes inferred from their interaction with migrating mid-ocean ridges , 1991, Nature.

[7]  B. Kennett,et al.  Traveltimes for global earthquake location and phase identification , 1991 .

[8]  Peter M. Shearer,et al.  Constraints on upper mantle discontinuities from observations of long-period reflected and converted phases , 1991 .

[9]  P. Shearer,et al.  Global mapping of topography on the 660-km discontinuity , 1992, Nature.

[10]  Klaus Stammler,et al.  SeismicHandler: programmable multichannel data handler for interactive and automatic processing of seismological analyses , 1993 .

[11]  T. Kikegawa,et al.  The Phase Boundary Between α- and β-Mg2SiO4 Determined by in Situ X-ray Observation , 1994, Science.

[12]  H. Fujimoto,et al.  Interaction of the upwelling plume with the phase and chemical boundary at the 670 km discontinuity: effects of temperature-dependent viscosity , 1994 .

[13]  George Helffrich,et al.  Phase transition Clapeyron slopes and transition zone seismic discontinuity topography , 1994 .

[14]  Walter H. F. Smith,et al.  New version of the generic mapping tools , 1995 .

[15]  Mantle dynamics: The strong control of the spinel-perovskite transition at a depth of 660 km , 1995 .

[16]  E. R. Engdahl,et al.  Constraints on seismic velocities in the Earth from traveltimes , 1995 .

[17]  G. Schubert,et al.  Mantle plume interaction with an endothermic phase change , 1995 .

[18]  U. Christensen,et al.  The excess temperature of plumes rising from the core‐mantle boundary , 1996 .

[19]  R. Kind,et al.  The Nature of the 660-Kilometer Upper-Mantle Seismic Discontinuity from Precursors to the PP Phase , 1996, Science.

[20]  J. Montagner,et al.  Evidence for a stagnant plume in the transition zone? , 1997 .

[21]  F. Neele,et al.  Gross errors in upper‐mantle discontinuity topography from underside reflection data , 1997 .

[22]  Emmanuel Chaljub,et al.  Sensitivity of SS precursors to topography on the upper‐mantle 660‐km discontinuity , 1997 .

[23]  A. Dziewoński,et al.  Global de-correlation of the topography of transition zone discontinuities , 1998 .

[24]  D. Weidner,et al.  Chemical‐ and Clapeyron‐induced buoyancy at the 660 km discontinuity , 1998 .

[25]  S. Solomon,et al.  Seismic evidence for a lower-mantle origin of the Iceland plume , 1998, Nature.

[26]  D. Helmberger,et al.  Evidence for strong shear velocity reductions and velocity gradients in the lower mantle beneath Africa , 1998 .

[27]  P. Shearer,et al.  Global mapping of topography on transition zone velocity discontinuities by stacking SS precursors , 1998 .

[28]  F. Neele,et al.  Imaging upper-mantle discontinuity topography using underside-reflection data , 1999 .

[29]  P. Shearer,et al.  A map of topography on the 410‐km discontinuity from PP precursors , 1999 .

[30]  Thomas J. Owens,et al.  The TauP Toolkit: Flexible Seismic Travel-Time and Raypath Utilities , 1999 .

[31]  J. Montagner,et al.  Global‐scale analysis of the mantle Pds phases , 1999 .

[32]  J. Woodhouse,et al.  Complex Shear Wave Velocity Structure Imaged Beneath Africa and Iceland. , 1999, Science.

[33]  D. Yuen,et al.  Mantle plumes pinched in the transition zone , 2000 .

[34]  P. Shearer Upper Mantle Seismic Discontinuities , 2013 .

[35]  C. Bassin,et al.  The Current Limits of resolution for surface wave tomography in North America , 2000 .

[36]  W. J. Morgan,et al.  The seismic anomaly beneath Iceland extends down to the mantle transition zone and no deeper , 2000 .

[37]  G. Helffrich Topography of the transition zone seismic discontinuities , 2000 .

[38]  K. Priestley,et al.  Mapping the Hawaiian plume conduit with converted seismic waves , 2000, Nature.

[39]  T. J. Owens,et al.  Mantle transition zone structure beneath Tanzania, east Africa , 2000 .

[40]  H. Nataf,et al.  Seismic Imaging of Mantle Plumes , 2000 .

[41]  Dapeng Zhao,et al.  Seismic structure and origin of hotspots and mantle plumes , 2001 .

[42]  T. Duffy,et al.  The post-spinel transformation in Mg2SiO4 and its relation to the 660-km seismic discontinuity , 2001, Nature.

[43]  M. Weber,et al.  A reflector at 200 km depth beneath the northwest Pacific , 2001 .

[44]  W. J. Morgan,et al.  Imaging the mantle beneath Iceland using integrated seismological techniques , 2002 .

[45]  Sebastian Rost,et al.  ARRAY SEISMOLOGY: METHODS AND APPLICATIONS , 2002 .

[46]  Jean Besse,et al.  Three distinct types of hotspots in the Earth's mantle , 2002 .

[47]  Yu Jeffrey Gu,et al.  Global variability of transition zone thickness , 2002 .

[48]  K. Hirose Phase transitions in pyrolitic mantle around 670‐km depth: Implications for upwelling of plumes from the lower mantle , 2002 .

[49]  M. Weber,et al.  The upper mantle transition zone discontinuities in the Pacific as determined by short-period array data , 2002 .

[50]  S. Grand Mantle shear–wave tomography and the fate of subducted slabs , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[51]  D. Helmberger,et al.  Ridge‐like lower mantle structure beneath South Africa , 2003 .

[52]  M. Gurnis,et al.  Seismic tomography, surface uplift, and the breakup of Gondwanaland: Integrating mantle convection backwards in time , 2003 .

[53]  S. Ono,et al.  Post-spinel transition in Mg2SiO4 determined by high P–T in situ X-ray diffractometry , 2003 .

[54]  X. Yuan,et al.  Receiver functions in northeast China – implications for slab penetration into the lower mantle in northwest Pacific subduction zone , 2003 .

[55]  Li Zhao,et al.  SS‐wave sensitivity to upper mantle structure: Implications for the mapping of transition zone discontinuity topographies , 2003 .

[56]  T. Yoshino,et al.  Olivine‐wadsleyite transition in the system (Mg,Fe)2SiO4 , 2004 .

[57]  K. Hirose,et al.  Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications , 2004 .

[58]  É. Stutzmann,et al.  Convective patterns under the Indo-Atlantic « box » , 2005 .

[59]  D. Giardini,et al.  Seismic discontinuities in the Mediterranean mantle , 2005 .

[60]  K. Putirka Mantle potential temperatures at Hawaii, Iceland, and the mid‐ocean ridge system, as inferred from olivine phenocrysts: Evidence for thermally driven mantle plumes , 2005 .

[61]  J. Woodhouse,et al.  Topography of the 410-km discontinuity from PP and SS precursors , 2005 .

[62]  N. Sleep Mantle plumes from top to bottom , 2006 .

[63]  P. Shearer,et al.  A global study of transition zone thickness using receiver functions , 2006 .

[64]  J. Montagner,et al.  Azores hotspot signature in the upper mantle , 2006 .

[65]  S. Solomon,et al.  Upper mantle structure beneath the Azores hotspot from finite-frequency seismic tomography , 2006 .

[66]  B. Steinberger,et al.  Conduit diameter and buoyant rising speed of mantle plumes: Implications for the motion of hot spots and shape of plume conduits , 2006 .

[67]  K. Chambers,et al.  The Nature of the 660-Kilometer Discontinuity in Earth's Mantle from Global Seismic Observations of PP Precursors , 2006, Science.

[68]  N. Schmerr,et al.  Investigation of upper mantle discontinuity structure beneath the central Pacific using SS precursors , 2006 .

[69]  Guust Nolet,et al.  A catalogue of deep mantle plumes: New results from finite‐frequency tomography , 2006 .

[70]  D. Zhao Seismic images under 60 hotspots: Search for mantle plumes , 2007 .

[71]  N. Schmerr,et al.  Upper Mantle Discontinuity Topography from Thermal and Chemical Heterogeneity , 2007, Science.

[72]  A. Deuss Seismic observations of transition-zone discontinuities beneath hotspot locations , 2007 .

[73]  H. Kawaji,et al.  Low-temperature heat capacities, entropies and enthalpies of Mg2SiO4 polymorphs, and α−β−γ and post-spinel phase relations at high pressure , 2007 .

[74]  E. Garnero,et al.  Seismic array detection of subducted oceanic crust in the lower mantle , 2008 .

[75]  Jennifer Andrews,et al.  Detailed nature of the 660 km region of the mantle from global receiver function data , 2008 .

[76]  D. Frost The Upper Mantle and Transition Zone , 2008 .

[77]  B. Tauzin,et al.  The mantle transition zone as seen by global Pds phases: No clear evidence for a thin transition zone beneath hotspots , 2008 .

[78]  P. Shearer,et al.  Determination and analysis of long-wavelength transition zone structure using SS precursors , 2008 .

[79]  E. Engdahl,et al.  A new global model for P wave speed variations in Earth's mantle , 2008 .

[80]  J. Connolly,et al.  Thermochemical interpretation of one-dimensional seismic reference models for the upper mantle: evidence for bias due to heterogeneity , 2008 .

[81]  Mauricio D. Sacchi,et al.  Mantle reflectivity structure beneath oceanic hotspots , 2009 .

[82]  A. Deuss,et al.  Global Observations of Mantle Discontinuities Using SS and PP Precursors , 2009 .

[83]  C. Thomas,et al.  Improving Seismic Resolution Through Array Processing Techniques , 2009 .

[84]  S. Solomon,et al.  Mantle Shear-Wave Velocity Structure Beneath the Hawaiian Hot Spot , 2009, Science.

[85]  C. Thomas,et al.  Mantle transition zone structure along a profile in the SW Pacific: thermal and compositional variations , 2009 .

[86]  B. Steinberger,et al.  New seismic constraints on the upper mantle structure of the Hainan plume , 2009 .

[87]  N. Schmerr,et al.  Deep mantle plumes and convective upwelling beneath the Pacific Ocean , 2010 .

[88]  Q. Williams,et al.  Reconciling Pacific 410 and 660 km discontinuity topography, transition zone shear velocity patterns, and mantle phase transitions , 2010 .

[89]  J. Fonseca,et al.  Transition zone structure under a stationary hot spot: Cape Verde , 2010 .

[90]  É. Stutzmann,et al.  Stratification of the Earth beneath the Azores from P and S receiver functions , 2010 .

[91]  S. Solomon,et al.  Mantle P-wave velocity structure beneath the Hawaiian hotspot , 2010 .

[92]  N. Schmerr,et al.  Subducted lithosphere beneath the Kuriles from migration of PP precursors , 2011 .

[93]  John H. Woodhouse,et al.  S40RTS: A degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements , 2011 .

[94]  É. Stutzmann,et al.  Cape Verde hotspot from the upper crust to the top of the lower mantle , 2012 .

[95]  Kenneth G. Dueker,et al.  Hot mantle upwelling across the 660 beneath Yellowstone , 2012 .

[96]  You Tian,et al.  P-wave tomography of the western United States: Insight into the Yellowstone hotspot and the Juan de Fuca slab , 2012 .

[97]  C. Conrad,et al.  Plate motions, Andean orogeny, and volcanism above the South Atlantic convection cell , 2012 .

[98]  L. Bai,et al.  An analysis of SS precursors using spectral-element method seismograms , 2012 .

[99]  P. Shearer,et al.  Seismic imaging of melt in a displaced Hawaiian plume , 2013 .

[100]  A. Fichtner,et al.  The Iceland-Jan Mayen plume system and its impact on mantle dynamics in the North Atlantic region: Evidence from full-waveform inversion , 2013 .

[101]  D. Weidner,et al.  Phase Transformations: Implications for Mantle Structure , 2013 .

[102]  G. Nolet,et al.  Multiple-frequency tomography of the upper mantle beneath the African/Iberian collision zone , 2013 .

[103]  F. Vernon,et al.  Influence of station topography and Moho depth on the mislocation vectors for the Kyrgyz Broadband Seismic Network (KNET) , 2013 .

[104]  S. Solomon,et al.  Double layering of a thermochemical plume in the upper mantle beneath Hawaii , 2013 .

[105]  G. Leahy,et al.  Implications for the origin of Hawaiian volcanism from a converted wave analysis of the mantle transition zone , 2013 .

[106]  Barbara Romanowicz,et al.  Waveform Tomography Reveals Channeled Flow at the Base of the Oceanic Asthenosphere , 2013, Science.

[107]  D. Dobson,et al.  Mantle transition zone structure beneath India and Western China from migration of PP and SS precursors , 2014 .

[108]  Xin Liu,et al.  Seismic evidence for a mantle plume beneath the Cape Verde hotspot , 2014 .

[109]  C. Thomas,et al.  Crustal and upper-mantle structure beneath the western Atlas Mountains in SW Morocco derived from receiver functions , 2014 .

[110]  N. Schmerr,et al.  On the difficulties of detecting PP precursors , 2015 .