Edge Groups: An Approach to Understanding the Mesh Quality of Marching Methods

Marching cubes is the most popular isosurface extraction algorithm due to its simplicity, efficiency and robustness. It has been widely studied, improved, and extended. While much early work was concerned with efficiency and correctness issues, lately there has been a push to improve the quality of marching cubes meshes so that they can be used in computational codes. In this work we present a new classification of MC cases that we call edge groups, which helps elucidate the issues that impact the triangle quality of the meshes that the method generates. This formulation allows a more systematic way to bound the triangle quality, and is general enough to extend to other polyhedral cell shapes used in other polygonization algorithms. Using this analysis, we also discuss ways to improve the quality of the resulting triangle mesh, including some that require only minor modifications of the original algorithm.

[1]  Roberto Scopigno,et al.  Discretized Marching Cubes , 1994, Proceedings Visualization '94.

[2]  Luciana Porcher Nedel,et al.  Edge Transformations for Improving Mesh Quality of Marching Cubes , 2009, IEEE Transactions on Visualization and Computer Graphics.

[3]  Adam Huang,et al.  Approximating normals for marching cubes applied to locally supported isosurfaces , 2002, IEEE Visualization, 2002. VIS 2002..

[4]  Joshua A. Levine,et al.  Delaunay Meshing of Isosurfaces , 2007, IEEE International Conference on Shape Modeling and Applications 2007 (SMI '07).

[5]  Geoff Wyvill,et al.  Data structure forsoft objects , 1986, The Visual Computer.

[6]  Sarah F. Frisken Constrained Elastic Surface Nets: Generating Smooth Surfaces from Binary Segmented Data , 1998, MICCAI.

[7]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[8]  Sundaresan Raman,et al.  Quality Isosurface Mesh Generation Using an Extended Marching Cubes Lookup Table , 2008, Comput. Graph. Forum.

[9]  Gabriel Taubin,et al.  Volume warping for adaptive isosurface extraction , 2002, IEEE Visualization, 2002. VIS 2002..

[10]  Gregory M. Nielson MC*: Star Functions for Marching Cubes , 2003, IEEE Visualization.

[11]  J. Wilhelms,et al.  Octrees for faster isosurface generation , 1992, TOGS.

[12]  Gregory M. Nielson,et al.  Dual marching cubes , 2004, IEEE Visualization 2004.

[13]  Gabor Herman,et al.  Display of 3-D Digital Images: Computational Foundations and Medical Applications , 1983, IEEE Computer Graphics and Applications.

[14]  Frans Vos,et al.  Improving Triangle Mesh Quality with SurfaceNets , 2000, MICCAI.

[15]  Paul K. Stockmeyer,et al.  Counting cases in substitope algorithms , 2004, IEEE Transactions on Visualization and Computer Graphics.

[16]  Steven J. Owen,et al.  A Survey of Unstructured Mesh Generation Technology , 1998, IMR.

[17]  Hong Yi,et al.  A survey of the marching cubes algorithm , 2006, Comput. Graph..

[18]  Roger Crawfis,et al.  Isosurface construction in any dimension using convex hulls , 2004, IEEE Transactions on Visualization and Computer Graphics.

[19]  Andrew H. Gee,et al.  Regularised marching tetrahedra: improved iso-surface extraction , 1999, Comput. Graph..

[20]  Ross T. Whitaker,et al.  Topology, Accuracy, and Quality of Isosurface Meshes Using Dynamic Particles , 2007, IEEE Transactions on Visualization and Computer Graphics.

[21]  Enrico O. Purisima,et al.  A new tetrahedral tesselation scheme for isosurface generation , 1998, Comput. Graph..

[22]  Gregory M. Nielson,et al.  On Marching Cubes , 2003, IEEE Trans. Vis. Comput. Graph..

[23]  Timothy J. Baker,et al.  A Comparison Of Triangle Quality Measures , 2001, IMR.

[24]  Tao Ju,et al.  Dual contouring of hermite data , 2002, ACM Trans. Graph..

[25]  J. Shewchuk What Is a Good Linear Finite Element? Interpolation, Conditioning, Anisotropy, and Quality Measures , 2002 .

[26]  Hamish A. Carr,et al.  On Histograms and Isosurface Statistics , 2006, IEEE Transactions on Visualization and Computer Graphics.

[27]  Bernd Hamann,et al.  Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration , 2009, Mathematics and Visualization.

[28]  Thomas Theußl,et al.  Isosurfaces on Optimal Regular Samples , 2003, VisSym.

[29]  D. Moore Simplicial Mesh Generation with Applications , 1992 .

[30]  Paul K. Stockmeyer,et al.  DeBruijn Counting for Visualization Algorithms , 2009, Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration.

[31]  Han-Wei Shen,et al.  A Near Optimal Isosurface Extraction Algorithm Using the Span Space , 1996, IEEE Trans. Vis. Comput. Graph..

[32]  Jonathan Richard Shewchuk,et al.  Isosurface stuffing: fast tetrahedral meshes with good dihedral angles , 2007, ACM Trans. Graph..

[33]  LeeAnn Tzeng Warping cubes: better triangles from marching cubes , 2004 .

[34]  Roger Crawfis,et al.  Isosurfacing in higher dimensions , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[35]  M. Schlindwein,et al.  THREE-DIMENSIONAL DISPLAY OF HUMAN ORGANS FROM COMPUTED TOMOGRAMS , 1979 .

[36]  Jules Bloomenthal,et al.  Polygonization of implicit surfaces , 1988, Comput. Aided Geom. Des..

[37]  Greg Nielson MC/sup */: star functions for marching cubes , 2003, IEEE Visualization, 2003. VIS 2003..

[38]  Cláudio T. Silva,et al.  High-Quality Extraction of Isosurfaces from Regular and Irregular Grids , 2006, IEEE Transactions on Visualization and Computer Graphics.