New Treatment Horizons in Uveal and Cutaneous Melanoma

Melanoma is a complex and heterogeneous malignant tumor with distinct genetic characteristics and therapeutic challenges in both cutaneous melanoma (CM) and uveal melanoma (UM). This review explores the underlying molecular features and genetic alterations in these melanoma subtypes, highlighting the importance of employing specific model systems tailored to their unique profiles for the development of targeted therapies. Over the past decade, significant progress has been made in unraveling the molecular and genetic characteristics of CM and UM, leading to notable advancements in treatment options. Genetic mutations in the mitogen-activated protein kinase (MAPK) pathway drive CM, while UM is characterized by mutations in genes like GNAQ, GNA11, BAP1, EIF1AX, and SF3B1. Chromosomal aberrations, including monosomy 3 in UM and monosomy 10 in CM, play significant roles in tumorigenesis. Immune cell infiltration differs between CM and UM, impacting prognosis. Therapeutic advancements targeting these genetic alterations, including oncolytic viruses and immunotherapies, have shown promise in preclinical and clinical studies. Oncolytic viruses selectively infect malignant cells, inducing oncolysis and activating antitumor immune responses. Talimogene laherparepvec (T-VEC) is an FDA-approved oncolytic virus for CM treatment, and other oncolytic viruses, such as coxsackieviruses and HF-10, are being investigated. Furthermore, combining oncolytic viruses with immunotherapies, such as CAR-T cell therapy, holds great potential. Understanding the intrinsic molecular features of melanoma and their role in shaping novel therapeutic approaches provides insights into targeted interventions and paves the way for more effective treatments for CM and UM.

[1]  K. Yaddanapudi,et al.  Paraoxonase 2 (PON2) plays a limited role in murine lung tumorigenesis , 2023, Scientific reports.

[2]  T. Liang,et al.  Oncolytic virotherapy: basic principles, recent advances and future directions , 2023, Signal Transduction and Targeted Therapy.

[3]  E. Ruppin,et al.  NRF2 mediates melanoma addiction to GCDH by modulating apoptotic signalling , 2022, Nature Cell Biology.

[4]  R. Kurzrock,et al.  Indoleamine 2,3-dioxygenase (IDO) inhibitors and cancer immunotherapy. , 2022, Cancer treatment reviews.

[5]  M. Ratajewski,et al.  Targeting EGFR in melanoma - The sea of possibilities to overcome drug resistance. , 2022, Biochimica et biophysica acta. Reviews on cancer.

[6]  M. Coffey,et al.  Oncolytic virus–mediated expansion of dual-specific CAR T cells improves efficacy against solid tumors in mice , 2022, Science Translational Medicine.

[7]  M. Bendall,et al.  Specific human endogenous retroviruses predict metastatic potential in uveal melanoma , 2022, JCI insight.

[8]  A. Indra,et al.  NRF2 and Key Transcriptional Targets in Melanoma Redox Manipulation , 2022, Cancers.

[9]  S. Nair,et al.  Oncolytic viruses in melanoma , 2022, Frontiers in bioscience.

[10]  R. Gupta,et al.  Insights into the role of paraoxonase 2 in human pathophysiology , 2022, Journal of biosciences.

[11]  Hetian Lei,et al.  The roles of mouse double minute 2 (MDM2) oncoprotein in ocular diseases: A review. , 2022, Experimental eye research.

[12]  D. Brǎnișteanu,et al.  Uveal melanoma diagnosis and current treatment options (Review) , 2021, Experimental and therapeutic medicine.

[13]  M. Neumeister,et al.  Adjuvant and Neoadjuvant Therapeutics for the Treatment of Cutaneous Melanoma. , 2021, Clinics in plastic surgery.

[14]  M. Emanuelli,et al.  Beyond Nicotinamide Metabolism: Potential Role of Nicotinamide N-Methyltransferase as a Biomarker in Skin Cancers , 2021, Cancers.

[15]  F. F. de Melo,et al.  Oncolytic virus therapy in cancer: A current review , 2021, World journal of virology.

[16]  R. Sullivan,et al.  Overall Survival Benefit with Tebentafusp in Metastatic Uveal Melanoma. , 2021, The New England journal of medicine.

[17]  R. Schiffelers,et al.  Esterase-Sensitive Prodrugs of a Potent Bisubstrate Inhibitor of Nicotinamide N-Methyltransferase (NNMT) Display Cellular Activity , 2021, Biomolecules.

[18]  M. Emanuelli,et al.  Nicotinamide N‐methyltransferase gene silencing enhances chemosensitivity of melanoma cell lines , 2021, Pigment cell & melanoma research.

[19]  Bin Yu,et al.  Indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors in clinical trials for cancer immunotherapy , 2021, Journal of Hematology & Oncology.

[20]  N. Puri,et al.  Resistance to Molecularly Targeted Therapies in Melanoma , 2021, Cancers.

[21]  M. Emanuelli,et al.  Paraoxonase-2 Silencing Enhances Sensitivity of A375 Melanoma Cells to Treatment with Cisplatin , 2020, Antioxidants.

[22]  B. Schilling,et al.  The transcription factor NRF2 enhances melanoma malignancy by blocking differentiation and inducing COX2 expression , 2020, Oncogene.

[23]  M. Sznol,et al.  Tebentafusp, A TCR/Anti-CD3 Bispecific Fusion Protein Targeting gp100, Potently Activated Antitumor Immune Responses in Patients with Metastatic Melanoma , 2020, Clinical Cancer Research.

[24]  M. Consolaro,et al.  INDOLEAMINE 2,3-DIOXYGENASE IN MELANOMA PROGRESSION AND BRAF INHIBITOR RESISTANCE. , 2020, Pharmacological research.

[25]  Chuan Xu,et al.  Targeting Mouse Double Minute 2: Current Concepts in DNA Damage Repair and Therapeutic Approaches in Cancer , 2020, Frontiers in Pharmacology.

[26]  Pēteris Alberts,et al.  Effect of oncolytic ECHO-7 virus strain Rigvir on uveal melanoma cell lines , 2020, BMC Research Notes.

[27]  J. Geisler,et al.  BRAF mutational status as a prognostic marker for survival in malignant melanoma: a systematic review and meta-analysis , 2020, Acta oncologica.

[28]  C. Shields,et al.  Uveal melanoma , 2020, Nature Reviews Disease Primers.

[29]  V. Sondak,et al.  Systemic Therapy for Melanoma: ASCO Guideline. , 2020, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[30]  M. Trager,et al.  Oncolytic Viruses for the Treatment of Metastatic Melanoma , 2020, Current Treatment Options in Oncology.

[31]  Erkko Ylösmäki,et al.  Design and application of oncolytic viruses for cancer immunotherapy. , 2019, Current opinion in biotechnology.

[32]  E. Buchbinder,et al.  The Evolution of Adjuvant Therapy for Melanoma , 2019, Current Oncology Reports.

[33]  S. H. van der Burg,et al.  Uveal Versus Cutaneous Melanoma; Same Origin, Very Distinct Tumor Types , 2019, Cancers.

[34]  A. Santarelli,et al.  Analysis of nicotinamide N-methyltransferase in oral malignant melanoma and potential prognostic significance , 2019, Melanoma research.

[35]  Hai-rong Chen,et al.  Knockdown of FBXO22 inhibits melanoma cell migration, invasion and angiogenesis via the HIF-1α/VEGF pathway , 2019, Investigational New Drugs.

[36]  R. Salazar,et al.  A Phase 1 Trial of Oncolytic Adenovirus ICOVIR-5 Administered Intravenously to Cutaneous and Uveal Melanoma Patients. , 2019, Human gene therapy.

[37]  S. Kreis,et al.  Many ways to resistance: How melanoma cells evade targeted therapies. , 2019, Biochimica et biophysica acta. Reviews on cancer.

[38]  R. Carvajal,et al.  KIT as an Oncogenic Driver in Melanoma: An Update on Clinical Development , 2019, American Journal of Clinical Dermatology.

[39]  A. Spathis,et al.  BRAF Mutation Status in Primary, Recurrent, and Metastatic Malignant Melanoma and Its Relation to Histopathological Parameters , 2019, Dermatology practical & conceptual.

[40]  C. Bertolotto,et al.  Microphthalmia-Associated Transcription Factor (MITF) Regulates Immune Cell Migration into Melanoma , 2018, Translational oncology.

[41]  Young Uk Kim,et al.  Utilizing T-cell Activation Signals 1, 2, and 3 for Tumor-infiltrating Lymphocytes (TIL) Expansion: The Advantage Over the Sole Use of Interleukin-2 in Cutaneous and Uveal Melanoma , 2018, Journal of immunotherapy.

[42]  Carola Berking,et al.  Melanoma , 2018, The Lancet.

[43]  S. H. van der Burg,et al.  Digital PCR-Based T-cell Quantification–Assisted Deconvolution of the Microenvironment Reveals that Activated Macrophages Drive Tumor Inflammation in Uveal Melanoma , 2018, Molecular Cancer Research.

[44]  T. Valyi-Nagy,et al.  Herpes Simplex Virus 1 Infection Promotes the Growth of a Subpopulation of Tumor Cells in Three-Dimensional Uveal Melanoma Cultures , 2018, Journal of Virology.

[45]  S. Androudi,et al.  The Role of Histone Deacetylase Inhibitors in Uveal Melanoma: Current Evidence , 2018, AntiCancer Research.

[46]  J. Duker,et al.  Gamma Knife radiosurgery for locally recurrent choroidal melanoma following plaque radiotherapy , 2018, International Journal of Retina and Vitreous.

[47]  R. Nijhawan,et al.  Current perspectives on Mohs micrographic surgery for melanoma , 2018, Clinical, cosmetic and investigational dermatology.

[48]  C. Cebulla,et al.  Brachytherapy for patients with uveal melanoma: historical perspectives and future treatment directions , 2018, Clinical ophthalmology.

[49]  K. Peltonen,et al.  Oncolytic vaccines increase the response to PD-L1 blockade in immunogenic and poorly immunogenic tumors , 2018, Oncoimmunology.

[50]  Pēteris Alberts,et al.  Effect of the oncolytic ECHO-7 virus Rigvir® on the viability of cell lines of human origin in vitro , 2018, Journal of Cancer.

[51]  R. Carvajal,et al.  Treatment of uveal melanoma: where are we now? , 2018, Therapeutic advances in medical oncology.

[52]  R. Rabadán,et al.  Quantitative Analysis of Immune Infiltrates in Primary Melanoma , 2018, Cancer Immunology Research.

[53]  J. Yeung,et al.  Uveal Melanoma: A Review of the Literature , 2018, Oncology and Therapy.

[54]  K. Gravdal,et al.  Prognostic impact of chromosomal aberrations and GNAQ, GNA11 and BAP1 mutations in uveal melanoma , 2018, Acta ophthalmologica.

[55]  J. Kirkwood,et al.  Adjuvant interferon-α for the treatment of high-risk melanoma: An individual patient data meta-analysis. , 2017, European journal of cancer.

[56]  Joshua M. Stuart,et al.  Integrative Analysis Identifies Four Molecular and Clinical Subsets in Uveal Melanoma. , 2018, Cancer cell.

[57]  C. Berking,et al.  Prognostic significance of BRAF and NRAS mutations in melanoma: a German study from routine care , 2017, BMC Cancer.

[58]  Y. Kodera,et al.  Genomic Signature of the Natural Oncolytic Herpes Simplex Virus HF10 and Its Therapeutic Role in Preclinical and Clinical Trials , 2017, Front. Oncol..

[59]  M. Falleni,et al.  M1 and M2 macrophages’ clinicopathological significance in cutaneous melanoma , 2017, Melanoma research.

[60]  A. K. Srivastava,et al.  Treatment of metastatic uveal melanoma with adoptive transfer of tumour-infiltrating lymphocytes: a single-centre, two-stage, single-arm, phase 2 study. , 2017, The Lancet. Oncology.

[61]  Catherine A. Shang,et al.  Whole-genome landscapes of major melanoma subtypes , 2017, Nature.

[62]  C. Bertolotto,et al.  Focus on cutaneous and uveal melanoma specificities , 2017, Genes & development.

[63]  D. Fisher,et al.  The master role of microphthalmia-associated transcription factor in melanocyte and melanoma biology. , 2017, Laboratory investigation; a journal of technical methods and pathology.

[64]  Bin Zhao,et al.  Efficacy and safety of BRAF inhibition alone versus combined BRAF and MEK inhibition in melanoma: a meta-analysis of randomized controlled trials , 2017, Oncotarget.

[65]  Richard D Carvajal,et al.  Uveal melanoma: epidemiology, etiology, and treatment of primary disease , 2017, Clinical ophthalmology.

[66]  C. Berking,et al.  Inhibition of histone deacetylases in melanoma—a perspective from bench to bedside , 2016, Experimental dermatology.

[67]  A. Hauschild,et al.  Prolonged Survival in Stage III Melanoma with Ipilimumab Adjuvant Therapy. , 2016, The New England journal of medicine.

[68]  I. Puzanov,et al.  Talimogene Laherparepvec in Combination With Ipilimumab in Previously Untreated, Unresectable Stage IIIB-IV Melanoma. , 2016, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[69]  Ivana K. Kim,et al.  Second Primary Neoplasms in Patients With Uveal Melanoma: A SEER Database Analysis. , 2016, American journal of ophthalmology.

[70]  Bei Jin,et al.  Class III-specific HDAC inhibitor Tenovin-6 induces apoptosis, suppresses migration and eliminates cancer stem cells in uveal melanoma , 2016, Scientific Reports.

[71]  Gary K. Schwartz,et al.  Tumour exosome integrins determine organotropic metastasis , 2015, Nature.

[72]  H. Kwan,et al.  Quercetin inhibits HGF/c-Met signaling and HGF-stimulated melanoma cell migration and invasion , 2015, Molecular Cancer.

[73]  S. Rosenberg,et al.  Complete regression of metastatic cervical cancer after treatment with human papillomavirus-targeted tumor-infiltrating T cells. , 2015, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[74]  A. Jochemsen,et al.  Embryonic Zebrafish: Different Phenotypes after Injection of Human Uveal Melanoma Cells , 2015, Ocular Oncology and Pathology.

[75]  H. Kaufman,et al.  Oncolytic Virus Immunotherapy for Melanoma , 2015, Current Treatment Options in Oncology.

[76]  C. Shields,et al.  Uveal melanoma: Estimating prognosis , 2015, Indian journal of ophthalmology.

[77]  R. Kučera,et al.  Evaluation of IGF1 serum levels in malignant melanoma and healthy subjects. , 2014, Anticancer research.

[78]  J. Nemunaitis,et al.  CALM study: A phase II study of an intratumorally delivered oncolytic immunotherapeutic agent, coxsackievirus A21, in patients with stage IIIc and stage IV malignant melanoma. , 2014 .

[79]  S. Rosenberg,et al.  Cancer Immunotherapy Based on Mutation-Specific CD4+ T Cells in a Patient with Epithelial Cancer , 2014, Science.

[80]  H. Rui,et al.  Expression of insulin‐like growth factor‐1 receptor in metastatic uveal melanoma and implications for potential autocrine and paracrine tumor cell growth , 2014, Pigment cell & melanoma research.

[81]  N. Naus,et al.  Patient survival in uveal melanoma is not affected by oncogenic mutations in GNAQ and GNA11 , 2013, British Journal of Cancer.

[82]  Guillermina Lozano,et al.  Molecular Pathways: Targeting Mdm2 and Mdm4 in Cancer Therapy , 2012, Clinical Cancer Research.

[83]  G. Linette,et al.  Phase II trial of intravenous administration of Reolysin(®) (Reovirus Serotype-3-dearing Strain) in patients with metastatic melanoma. , 2012, Molecular therapy : the journal of the American Society of Gene Therapy.

[84]  S. Russell,et al.  ONCOLYTIC VIROTHERAPY , 2012, Nature Biotechnology.

[85]  T. Fujii,et al.  Impact of novel oncolytic virus HF10 on cellular components of the tumor microenviroment in patients with recurrent breast cancer , 2011, Cancer Gene Therapy.

[86]  Yongchang Shi,et al.  Cabozantinib (XL184), a Novel MET and VEGFR2 Inhibitor, Simultaneously Suppresses Metastasis, Angiogenesis, and Tumor Growth , 2011, Molecular Cancer Therapeutics.

[87]  I. Yeh,et al.  Abstract 3587: XL184: c-Met inhibition is effective in a mouse xenograft model of metastatic uveal melanoma , 2011 .

[88]  A. Bowcock,et al.  Frequent Mutation of BAP1 in Metastasizing Uveal Melanomas , 2010, Science.

[89]  J. O'Brien,et al.  Mutations in GNA11 in uveal melanoma. , 2010, The New England journal of medicine.

[90]  A. de Klein,et al.  Genetics of Uveal Melanoma and Cutaneous Melanoma: Two of a Kind? , 2010, Dermatology research and practice.

[91]  A. Jacob,et al.  Intranodal immunization with a vaccinia virus encoding multiple antigenic epitopes and costimulatory molecules in metastatic melanoma. , 2010, Molecular therapy : the journal of the American Society of Gene Therapy.

[92]  E. Grimm,et al.  Frequencies of NRAS and BRAF mutations increase from the radial to the vertical growth phase in cutaneous melanoma. , 2009, The Journal of investigative dermatology.

[93]  N. Ibrahim,et al.  Molecular pathogenesis of cutaneous melanocytic neoplasms. , 2009, Annual review of pathology.

[94]  J. Harbour,et al.  Emerging insights into the molecular pathogenesis of uveal melanoma. , 2008, Future oncology.

[95]  I. Mori,et al.  Oncolytic virotherapy for malignant melanoma with herpes simplex virus type 1 mutant HF10. , 2008, Journal of dermatological science.

[96]  A. Mirmohammadsadegh,et al.  Cutaneous melanoma: fishing with chips. , 2008, Current molecular medicine.

[97]  J. Hansson,et al.  Human cutaneous melanoma; a review of NRAS and BRAF mutation frequencies in relation to histogenetic subclass and body site , 2008, Molecular oncology.

[98]  C. Shields The hunt for the secrets of uveal melanoma , 2008, Clinical & experimental ophthalmology.

[99]  C. Janssen,et al.  The T1799A BRAF mutation is present in iris melanoma. , 2007, Investigative ophthalmology & visual science.

[100]  B. Damato Legacy of the collaborative ocular melanoma study. , 2007, Archives of ophthalmology.

[101]  W. Rubinstein,et al.  Genetic study of familial uveal melanoma: association of uveal and cutaneous melanoma with cutaneous and ocular nevi. , 2007, Ophthalmology.

[102]  M. Vähä-Koskela,et al.  Oncolytic viruses in cancer therapy , 2007, Cancer Letters.

[103]  Kath Smith,et al.  Multiplex fluorescence in situ hybridization identifies novel rearrangements of chromosomes 6, 15, and 18 in primary uveal melanoma. , 2006, Experimental eye research.

[104]  A. de Klein,et al.  Clinical and cytogenetic analyses in uveal melanoma. , 2006, Investigative ophthalmology & visual science.

[105]  G. Jiang,et al.  The molecular mechanism of HDAC inhibitors in anticancer effects. , 2006, Cellular & molecular immunology.

[106]  J. Earle,et al.  Development of metastatic disease after enrollment in the COMS trials for treatment of choroidal melanoma: Collaborative Ocular Melanoma Study Group Report No. 26. , 2005, Archives of ophthalmology.

[107]  T. Saida Lessons learned from studies of the development of early melanoma , 2005, International Journal of Clinical Oncology.

[108]  K. Jöckel,et al.  Loss of heterozygosity of 1p in uveal melanomas with monosomy 3 , 2005, International journal of cancer.

[109]  C. Klaver,et al.  Concurrent loss of chromosome arm 1p and chromosome 3 predicts a decreased disease-free survival in uveal melanoma patients. , 2005, Investigative ophthalmology & visual science.

[110]  Justis P. Ehlers,et al.  DDEF1 Is Located in an Amplified Region of Chromosome 8q and Is Overexpressed in Uveal Melanoma , 2005, Clinical Cancer Research.

[111]  Justis P. Ehlers,et al.  NBS1 Expression as a Prognostic Marker in Uveal Melanoma , 2005, Clinical Cancer Research.

[112]  J. Cheng,et al.  Deregulated Akt3 Activity Promotes Development of Malignant Melanoma , 2004, Cancer Research.

[113]  G. Saldanha,et al.  High BRAF mutation frequency does not characterize all melanocytic tumor types , 2004, International journal of cancer.

[114]  E. Zwarthoff,et al.  The RAS-BRAF kinase pathway is not involved in uveal melanoma , 2004, Melanoma research.

[115]  T. Kivelä,et al.  Very long-term prognosis of patients with malignant uveal melanoma. , 2003, Investigative ophthalmology & visual science.

[116]  F. Haluska,et al.  PTEN signaling pathways in melanoma , 2003, Oncogene.

[117]  L. Chin,et al.  The INK4a/ARF locus and melanoma , 2003, Oncogene.

[118]  I. Grierson,et al.  Monosomy 3 in uveal melanoma: correlation with clinical and histologic predictors of survival. , 2003, Investigative ophthalmology & visual science.

[119]  A. Nicholson,et al.  Mutations of the BRAF gene in human cancer , 2002, Nature.

[120]  J. J. van den Oord,et al.  Analysis of N- and K-ras mutations in the distinctive tumor progression phases of melanoma. , 2001, The Journal of investigative dermatology.

[121]  O. Larsson,et al.  Concomitant loss of chromosome 3 and whole arm losses and gains of chromosome 1, 6, or 8 in metastasizing primary uveal melanoma. , 2001, Investigative ophthalmology & visual science.

[122]  T. Kivelä,et al.  Tumor doubling times in metastatic malignant melanoma of the uvea: tumor progression before and after treatment. , 2000, Ophthalmology.

[123]  R. Rees,et al.  Association of specific chromosome alterations with tumour phenotype in posterior uveal melanoma , 2000, British Journal of Cancer.

[124]  D. Pinkel,et al.  Comparative genomic hybridization analysis of archival formalin-fixed paraffin-embedded uveal melanomas. , 1996, Cancer genetics and cytogenetics.

[125]  N. Bornfeld,et al.  Cytogenetics of twelve cases of uveal melanoma and patterns of nonrandom anomalies and isochromosome formation. , 1995, Cancer genetics and cytogenetics.

[126]  D. Horsman,et al.  Cytogenetic analysis of uveal melanoma consistent occurrence of monosomy 3 and trisomy 8q , 1993, Cancer.

[127]  H. Kalirai,et al.  Okuläre Melanome , 2017, Der Pathologe.

[128]  V. Barak,et al.  Insulin-like growth factor-1 as a predictive biomarker for metastatic uveal melanoma in humans. , 2013, Investigative ophthalmology & visual science.

[129]  Parul Singh,et al.  Choroidal melanoma , 2012, Oman journal of ophthalmology.

[130]  M. Quintanilla,et al.  Molecular biology of malignant melanoma. , 2008, Advances in experimental medicine and biology.

[131]  Justis P. Ehlers,et al.  Molecular Pathobiology of Uveal Melanoma , 2006, International ophthalmology clinics.

[132]  Mattias Höglund,et al.  Dissecting karyotypic patterns in malignant melanomas: Temporal clustering of losses and gains in melanoma karyotypic evolution , 2004, International journal of cancer.