Managing leading edges during assembly of the Wendelstein 7-X divertor

[1]  H. Hölbe,et al.  Access to edge scenarios for testing a scraper element in early operation phases of Wendelstein 7-X , 2016 .

[2]  E. Strumberger,et al.  Modular Stellarator Reactors and Plans for Wendelstein 7-X , 1992 .

[3]  F. Sardei,et al.  3D Edge Modeling and Island Divertor Physics , 2004 .

[4]  D. Reiter,et al.  On the W7-X divertor performance under detached conditions , 2016 .

[5]  J. Tretter,et al.  Progress in the design and development of a test divertor (TDU) for the start of W7-X operation , 2009 .

[6]  Matthias Hirsch,et al.  Key results from the first plasma operation phase and outlook for future performance in Wendelstein 7-X , 2017, Physics of plasmas.

[7]  V. Philipps,et al.  Evidence of hot spot formation on carbon limiters due to thermal electron emission , 1993 .

[8]  J. Tretter,et al.  Actively Water-Cooled Plasma Facing Components of the Wendelstein 7-X Stellarator , 2013 .

[9]  P. Merkel,et al.  Three-dimensional free boundary calculations using a spectral Green's function method , 1986 .

[10]  M. Grahl,et al.  Service oriented architecture for scientific analysis at W7-X. An example of a field line tracer , 2013 .

[11]  Dirk Timmermann,et al.  Technical challenges in the construction of the steady-state stellarator Wendelstein 7-X , 2013 .

[12]  J. Kisslinger,et al.  Magnetic Field and Coil Systems of the Modular Helias Configurations HS 5-10 , 1991 .

[13]  S. Bozhenkov,et al.  Numerical studies of scrape-off layer connection length in Wendelstein7-X , 2018 .

[14]  N. A. Pablant,et al.  Performance and properties of the first plasmas of Wendelstein 7-X , 2016 .

[15]  Dirk Timmermann,et al.  Major results from the first plasma campaign of the Wendelstein 7-X stellarator , 2017 .

[16]  H. Greuner,et al.  The Capabilities of Steady State Operation at the Stellarator W7-X with Emphasis on Divertor Design , 2000 .