50 mm diameter Sn-doped (0 0 1) β-Ga2O3 crystal growth using the vertical Bridgeman technique in ambient air

[1]  K. Hoshikawa,et al.  2-inch diameter (1 0 0) β-Ga2O3 crystal growth by the vertical Bridgman technique in a resistance heating furnace in ambient air , 2020 .

[2]  M. Baldini,et al.  Recent progress in the growth of β-Ga2O3 for power electronics applications , 2017 .

[3]  Akito Kuramata,et al.  First Demonstration of Ga2O3 Trench MOS-Type Schottky Barrier Diodes , 2017, IEEE Electron Device Letters.

[4]  K. Hoshikawa,et al.  Defect characterization of β-Ga2O3 single crystals grown by vertical Bridgman method , 2016 .

[5]  Akito Kuramata,et al.  High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth , 2016 .

[6]  K. Hoshikawa,et al.  Growth of β-Ga2O3 single crystals using vertical Bridgman method in ambient air , 2016 .

[7]  S. Yamakoshi,et al.  Temperature-dependent capacitance–voltage and current–voltage characteristics of Pt/Ga2O3 (001) Schottky barrier diodes fabricated on n––Ga2O3 drift layers grown by halide vapor phase epitaxy , 2016 .

[8]  Yuta Koga,et al.  High-mobility β-Ga2O3() single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact , 2015 .

[9]  Reinhard Uecker,et al.  On the bulk β-Ga2O3 single crystals grown by the Czochralski method , 2014 .

[10]  K. Hoshikawa,et al.  Development of the vertical Bridgman technique for 6-inch diameter c-axis sapphire growth supported by numerical simulation , 2014 .

[11]  Kazuo Aoki,et al.  β-Ga2O3 and single-crystal phosphors for high-brightness white LEDs and LDs, and β-Ga2O3 potential for next generation of power devices , 2014, Photonics West - Optoelectronic Materials and Devices.

[12]  Akito Kuramata,et al.  Development of gallium oxide power devices , 2014 .

[13]  Akito Kuramata,et al.  Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates , 2012 .

[14]  Steffen Ganschow,et al.  Czochralski growth and characterization of β‐Ga2O3 single crystals , 2010 .

[15]  Hideo Aida,et al.  Growth of β-Ga2O3 Single Crystals by the Edge-Defined, Film Fed Growth Method , 2008 .

[16]  Kiyoshi Shimamura,et al.  Electrical conductivity and carrier concentration control in β-Ga2O3 by Si doping , 2008 .

[17]  R. Uecker,et al.  Growth of oxide compounds under dynamic atmosphere composition , 2008, 0805.2217.

[18]  Kazuo Nakajima,et al.  Fabrication and characterization of transparent conductive Sn-doped β-Ga2O3 single crystal , 2007 .

[19]  S. Uda,et al.  Growth of langasite via Bridgman technique along [ 0 0 0 1 ], [ 2 1 1 0 ] and [ 0 1 1 1 ] for , 2004 .

[20]  Noboru Ichinose,et al.  Large-size β-Ga2O3 single crystals and wafers , 2004 .

[21]  F. Aldinger,et al.  Thermodynamic Assessment of the Gallium‐Oxygen System , 2004 .

[22]  K. Hoshikawa,et al.  Dislocation-free Czochralski Si crystal growth without a thin neck: dislocation behavior due to incomplete seeding , 2003 .

[23]  E. Víllora,et al.  Infrared Reflectance and Electrical Conductivity of β‐Ga2O3 , 2002 .

[24]  Hideo Hosono,et al.  Deep-ultraviolet transparent conductive β-Ga2O3 thin films , 2000 .

[25]  Peter Reiche,et al.  Czochralski grown Ga2O3 crystals , 2000 .

[26]  Hideo Hosono,et al.  Synthesis and control of conductivity of ultraviolet transmitting β-Ga2O3 single crystals , 1997 .

[27]  M. Sasaura,et al.  Liquid encapsulated, vertical bridgman growth of large diameter, low dislocation density, semi-insulating GaAs , 1989 .

[28]  H. H. Tippins Optical Absorption and Photoconductivity in the Band Edge of β − Ga 2 O 3 , 1965 .

[29]  T. Schroeder,et al.  Czochralski-grown bulk β-Ga2O3 single crystals doped with mono-, di-, tri-, and tetravalent ions , 2020 .