Heteroclinic switching between chimeras.

Functional oscillator networks, such as neuronal networks in the brain, exhibit switching between metastable states involving many oscillators. We give exact results how such global dynamics can arise in paradigmatic phase oscillator networks: Higher-order network interactions give rise to metastable chimeras-localized frequency synchrony patterns-which are joined by heteroclinic connections. Moreover, we illuminate the mechanisms that underly the switching dynamics in these experimentally accessible networks.

[1]  P. Ashwin,et al.  Chaos in generically coupled phase oscillator networks with nonpairwise interactions. , 2016, Chaos.

[2]  Christian Bick,et al.  Isotropy of Angular Frequencies and Weak Chimeras with Broken Symmetry , 2015, J. Nonlinear Sci..

[3]  R. Quinn,et al.  Designing responsive pattern generators: stable heteroclinic channel cycles for modeling and control , 2015, Bioinspiration & biomimetics.

[4]  Gilles Laurent,et al.  Transient Dynamics for Neural Processing , 2008, Science.

[5]  Vivien Kirk,et al.  A competition between heteroclinic cycles , 1994 .

[6]  P. Holmes,et al.  Random perturbations of heteroclinic attractors , 1990 .

[7]  Michael Sebek,et al.  Robust Weak Chimeras in Oscillator Networks with Delayed Linear and Quadratic Interactions. , 2017, Physical review letters.

[8]  M. J. Field,et al.  Heteroclinic Networks in Homogeneous and Heterogeneous Identical Cell Systems , 2015, Journal of Nonlinear Science.

[9]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[10]  Takuma Tanaka,et al.  Multistable attractors in a network of phase oscillators with three-body interactions. , 2011, Physical review letters.

[11]  D. Abrams,et al.  Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators , 2014, 1403.6204.

[12]  Hiroshi Kori,et al.  Synchronization engineering: theoretical framework and application to dynamical clustering. , 2008, Chaos.

[13]  Katharina Krischer,et al.  Self-organized alternating chimera states in oscillatory media , 2014, Scientific Reports.

[14]  Mauricio Barahona,et al.  Emergence of Slow-Switching Assemblies in Structured Neuronal Networks , 2015, PLoS Comput. Biol..

[15]  P. Ashwin,et al.  Weak chimeras in minimal networks of coupled phase oscillators. , 2014, Chaos.

[16]  Marc Timme,et al.  Nonlinear dynamics: When instability makes sense , 2005, Nature.

[17]  Jan Sieber,et al.  Controlling unstable chaos: stabilizing chimera states by feedback. , 2014, Physical review letters.

[18]  Karl J. Friston,et al.  Recognizing Sequences of Sequences , 2009, PLoS Comput. Biol..

[19]  Arkady Pikovsky,et al.  Self-organized quasiperiodicity in oscillator ensembles with global nonlinear coupling. , 2007, Physical review letters.

[20]  Murray Shanahan,et al.  Metastability and chimera states in modular delay and pulse-coupled oscillator networks. , 2012, Chaos.

[21]  J. Kelso,et al.  The Metastable Brain , 2014, Neuron.

[22]  Dimitri Van De Ville,et al.  BOLD correlates of EEG topography reveal rapid resting-state network dynamics , 2010, NeuroImage.

[23]  Christian Bick,et al.  Dynamical origin of the effective storage capacity in the brain's working memory. , 2009, Physical review letters.

[24]  Thomas K. D. M. Peron,et al.  The Kuramoto model in complex networks , 2015, 1511.07139.

[25]  Erik A Martens,et al.  Bistable chimera attractors on a triangular network of oscillator populations. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Stefan Carlsson,et al.  Symmetry in Perspective , 1998, ECCV.

[27]  Stephen Coombes,et al.  Mathematical Frameworks for Oscillatory Network Dynamics in Neuroscience , 2015, The Journal of Mathematical Neuroscience.

[28]  Rustam Singh,et al.  Simulating , 2012 .

[29]  Y. Maistrenko,et al.  Smallest chimera states. , 2016, Physical review. E.

[30]  B. McNaughton,et al.  Reactivation of hippocampal ensemble memories during sleep. , 1994, Science.

[31]  Peter Ashwin,et al.  Hopf normal form with $S_N$ symmetry and reduction to systems of nonlinearly coupled phase oscillators , 2015, 1507.08079.

[32]  Stefano Allesina,et al.  Beyond pairwise mechanisms of species coexistence in complex communities , 2017, Nature.

[33]  Peter Ashwin,et al.  On designing heteroclinic networks from graphs , 2013, 1302.0984.

[34]  P. Ashwin,et al.  The dynamics ofn weakly coupled identical oscillators , 1992 .

[35]  A. Pikovsky,et al.  Effects of nonresonant interaction in ensembles of phase oscillators. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  Eckehard Schöll,et al.  Synchronization patterns and chimera states in complex networks: Interplay of topology and dynamics , 2016 .

[37]  O. Hallatschek,et al.  Chimera states in mechanical oscillator networks , 2013, Proceedings of the National Academy of Sciences.

[38]  Pablo Varona,et al.  Dynamical bridge between brain and mind , 2015, Trends in Cognitive Sciences.

[39]  C. Bick,et al.  Controlling chimeras , 2014, 1402.6363.

[40]  Arkady Pikovsky,et al.  Desynchronization transitions in nonlinearly coupled phase oscillators , 2011, 1102.0627.

[41]  Alexander Lohse,et al.  Switching in Heteroclinic Networks , 2016, SIAM J. Appl. Dyn. Syst..

[42]  Christian Bick,et al.  Chaotic weak chimeras and their persistence in coupled populations of phase oscillators , 2015, 1509.08824.

[43]  A. Litwin-Kumar,et al.  Slow dynamics and high variability in balanced cortical networks with clustered connections , 2012, Nature Neuroscience.

[44]  R. Spigler,et al.  The Kuramoto model: A simple paradigm for synchronization phenomena , 2005 .