Optimization of electrospinning process using intelligent control systems

This study describes the application of intelligent control systems in electrospinning engineering as well as to use these approaches for optimizing processing conditions. A multi-objective optimization method based on gene algorithm GA has been proposed for the design and control of electrospinning process. The processing parameters including Polyvinyl alcohol PVA solution concentration, applied voltage, spinning distance and volume flow rate were used as design variables and were mathematically related with the electrospun fiber properties fiber diameter and its distribution using gene expression programming GEP technique. Nonlinear mathematical functions were derived based on the processing parameters. Afterward, using a multi-objective optimization technique based on gene algorithm, optimal conditions were found in such a way that, mean electrospun fiber diameter and its distribution to be minimized.

[1]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[2]  David W. Coit,et al.  Multi-objective optimization using genetic algorithms: A tutorial , 2006, Reliab. Eng. Syst. Saf..

[3]  Darrell H. Reneker,et al.  Beaded nanofibers formed during electrospinning , 1999 .

[4]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[5]  Mikkel T. Jensen,et al.  Reducing the run-time complexity of multiobjective EAs: The NSGA-II and other algorithms , 2003, IEEE Trans. Evol. Comput..

[6]  Darrell H. Reneker,et al.  Electrospinning process and applications of electrospun fibers , 1995 .

[7]  Hirotaka Nakayama,et al.  Theory of Multiobjective Optimization , 1985 .

[8]  Carlos M. Fonseca,et al.  Multiobjective genetic algorithms , 1993 .

[9]  Darrell H. Reneker,et al.  Effects of parameters on nanofiber diameter determined from electrospinning model , 2007 .

[10]  Martin J. Oates,et al.  The Pareto Envelope-Based Selection Algorithm for Multi-objective Optimisation , 2000, PPSN.

[11]  Carlos A. Coello Coello,et al.  An updated survey of GA-based multiobjective optimization techniques , 2000, CSUR.

[12]  Mehrdad Tamiz,et al.  Multi-objective meta-heuristics: An overview of the current state-of-the-art , 2002, Eur. J. Oper. Res..

[13]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[14]  Carlos A. Coello Coello,et al.  A Comprehensive Survey of Evolutionary-Based Multiobjective Optimization Techniques , 1999, Knowledge and Information Systems.

[15]  Darrell H. Reneker,et al.  Structure and morphology of small diameter electrospun aramid fibers , 1995 .

[16]  Mottaghitalab,et al.  Control of electrospun nanofiber diameter using distance transform method , 2009 .

[17]  H. Ishibuchi,et al.  MOGA: multi-objective genetic algorithms , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[18]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[19]  Gary G. Yen,et al.  Dynamic multiobjective evolutionary algorithm: adaptive cell-based rank and density estimation , 2003, IEEE Trans. Evol. Comput..

[20]  Martin J. Oates,et al.  PESA-II: region-based selection in evolutionary multiobjective optimization , 2001 .

[21]  Ko-Hsin Liang,et al.  A new multiobjective evolutionary algorithm , 2002, Eur. J. Oper. Res..

[22]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[23]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[24]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[25]  Darrell H. Reneker,et al.  Bending instability of electrically charged liquid jets of polymer solutions in electrospinning , 2000 .

[26]  R. S. Laundy,et al.  Multiple Criteria Optimisation: Theory, Computation and Application , 1989 .

[27]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[28]  Timothy E. Long,et al.  Electrospinning of linear homopolymers of poly(methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent , 2005 .

[29]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[30]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[31]  Carlos A. Coello Coello,et al.  An updated survey of evolutionary multiobjective optimization techniques: state of the art and future trends , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[32]  Darrell H. Reneker,et al.  Taylor Cone and Jetting from Liquid Droplets in Electrospinning of Nanofibers , 2001 .

[33]  Cândida Ferreira,et al.  Gene Expression Programming: A New Adaptive Algorithm for Solving Problems , 2001, Complex Syst..

[34]  W. Park,et al.  The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers , 2004 .

[35]  P. Hajela,et al.  Genetic search strategies in multicriterion optimal design , 1991 .

[36]  Carlos A. Coello Coello,et al.  A Micro-Genetic Algorithm for Multiobjective Optimization , 2001, EMO.

[37]  Cândida Ferreira,et al.  Function Finding and the Creation of Numerical Constants in Gene Expression Programming , 2003 .

[38]  Shi Zhong-ke,et al.  Overview of multi-objective optimization methods , 2004 .

[39]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[40]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[41]  Gary G. Yen,et al.  Rank-density-based multiobjective genetic algorithm and benchmark test function study , 2003, IEEE Trans. Evol. Comput..

[42]  D. Reneker,et al.  Nanometre diameter fibres of polymer, produced by electrospinning , 1996 .

[43]  M Ziabari,et al.  Control of governing parameters in electrospinning process , 2009 .