Joint Learning of Discriminative Low-dimensional Image Representations Based on Dictionary Learning and Two-layer Orthogonal Projections

There are some inadequacies in the language description of this paper that require further improvement. This paper is based on a revision of a conference paper. It is now necessary to further explain the difference between the contributions of the two papers.

[1]  Trevor Darrell,et al.  DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition , 2013, ICML.

[2]  David Zhang,et al.  Sparse Representation Based Fisher Discrimination Dictionary Learning for Image Classification , 2014, International Journal of Computer Vision.

[3]  François Chollet,et al.  Xception: Deep Learning with Depthwise Separable Convolutions , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  M. Elad,et al.  $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.

[5]  Robert E. Mahony,et al.  Optimization Algorithms on Matrix Manifolds , 2007 .

[6]  Knut Hüper,et al.  An Intrinsic CG Algorithm for Computing Dominant Subspaces , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[7]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[8]  Mukund Desai,et al.  Robust Subspace Learning and Detection in Laplacian Noise and Interference , 2007, IEEE Transactions on Signal Processing.

[9]  Thomas S. Huang,et al.  Supervised translation-invariant sparse coding , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[10]  Sergey Ioffe,et al.  Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning , 2016, AAAI.

[11]  Pascal Vincent,et al.  Representation Learning: A Review and New Perspectives , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Xian Wei,et al.  Learning Image and Video Representations Based on Sparsity Priors , 2017 .

[13]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[14]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[15]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  A. Bruckstein,et al.  K-SVD : An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation , 2005 .

[17]  Pietro Perona,et al.  Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[18]  Ja-Chen Lin,et al.  A new LDA-based face recognition system which can solve the small sample size problem , 1998, Pattern Recognit..

[19]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[20]  Trac D. Tran,et al.  Structured sparse priors for image classification , 2013, ICIP.

[21]  Dieter Fox,et al.  Multipath Sparse Coding Using Hierarchical Matching Pursuit , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[22]  R. Vidal,et al.  Sparse Subspace Clustering: Algorithm, Theory, and Applications. , 2013, IEEE transactions on pattern analysis and machine intelligence.

[23]  James Philbin,et al.  FaceNet: A unified embedding for face recognition and clustering , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[24]  Jean Ponce,et al.  Task-Driven Dictionary Learning , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[26]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[27]  Cordelia Schmid,et al.  Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[28]  Yihong Gong,et al.  Linear spatial pyramid matching using sparse coding for image classification , 2009, CVPR.

[29]  Guillermo Sapiro,et al.  Supervised Dictionary Learning , 2008, NIPS.

[30]  G. Griffin,et al.  Caltech-256 Object Category Dataset , 2007 .

[31]  Martin Kleinsteuber,et al.  Separable Dictionary Learning , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[32]  Zoubin Ghahramani,et al.  Unifying linear dimensionality reduction , 2014, 1406.0873.

[33]  Xuan Tang,et al.  Reconstructible Nonlinear Dimensionality Reduction via Joint Dictionary Learning , 2019, IEEE Transactions on Neural Networks and Learning Systems.

[34]  Yoshua Bengio,et al.  Deep Learning of Representations , 2013, Handbook on Neural Information Processing.

[35]  Rémi Gribonval,et al.  Sample Complexity of Dictionary Learning and Other Matrix Factorizations , 2013, IEEE Transactions on Information Theory.

[36]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[37]  Larry S. Davis,et al.  Label Consistent K-SVD: Learning a Discriminative Dictionary for Recognition , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[39]  Jian Sun,et al.  Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  Junbin Gao,et al.  Dimensionality reduction via compressive sensing , 2012, Pattern Recognit. Lett..

[41]  Xiang Zhang,et al.  OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks , 2013, ICLR.

[42]  Yihong Gong,et al.  Locality-constrained Linear Coding for image classification , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[43]  Jiawei Han,et al.  Semi-supervised Discriminant Analysis , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[44]  Michael I. Jordan,et al.  Dimensionality Reduction for Supervised Learning with Reproducing Kernel Hilbert Spaces , 2004, J. Mach. Learn. Res..

[45]  Zhongfeng Wang,et al.  Dynamical Textures Modeling via Joint Video Dictionary Learning , 2017, IEEE Transactions on Image Processing.

[46]  Hao Shen,et al.  Trace Quotient Meets Sparsity: A Method for Learning Low Dimensional Image Representations , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[47]  Liang-Tien Chia,et al.  Laplacian Sparse Coding, Hypergraph Laplacian Sparse Coding, and Applications , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[48]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[49]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[50]  Rob Fergus,et al.  Visualizing and Understanding Convolutional Networks , 2013, ECCV.

[51]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[52]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[53]  Hao Shen,et al.  Joint learning sparsifying linear transformation for low-resolution image synthesis and recognition , 2017, Pattern Recognit..