A Hypervolume-Based Optimizer for High-Dimensional Objective Spaces

In the field of evolutionary multiobjective optimization, the hypervolume indicator is the only single set quality measure that is known to be strictly monotonic with regard to Pareto dominance. This property is of high interest and relevance for multiobjective search involving a large number of objective functions. However, the high computational effort required for calculating the indicator values has so far prevented to fully exploit the potential of hypervolume-based multiobjective optimization. This paper addresses this issue and proposes a fast search algorithm that uses Monte Carlo sampling to approximate the exact hypervolume values. In detail, we present HypE (Hypervolume Estimation Algorithm for Multiobjective Optimization), by which the accuracy of the estimates and the available computing resources can be traded off; thereby, not only many-objective problems become feasible with hypervolume-based search, but also the runtime can be flexibly adapted. The experimental results indicate that HypE is highly effective for many-objective problems in comparison to existing multiobjective evolutionary algorithms.

[1]  Eckart Zitzler,et al.  HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization , 2011, Evolutionary Computation.

[2]  Qing Yang,et al.  Novel Algorithm to Calculate Hypervolume Indicator of Pareto Approximation Set , 2007, ICIC.

[3]  Jonathan E. Fieldsend,et al.  Full Elite Sets for Multi-Objective Optimisation , 2002 .

[4]  David W. Corne,et al.  Properties of an adaptive archiving algorithm for storing nondominated vectors , 2003, IEEE Trans. Evol. Comput..

[5]  Kalyanmoy Deb,et al.  Faster Hypervolume-Based Search Using Monte Carlo Sampling , 2008, MCDM.

[6]  Joshua D. Knowles Local-search and hybrid evolutionary algorithms for Pareto optimization , 2002 .

[7]  Laura Plazola Zamora,et al.  Second-order preferences in group decision making , 2008, Oper. Res. Lett..

[8]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithms: classifications, analyses, and new innovations , 1999 .

[9]  Carlos M. Fonseca,et al.  An Improved Dimension-Sweep Algorithm for the Hypervolume Indicator , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[10]  Matteo Nicolini,et al.  A Two-Level Evolutionary Approach to Multi-criterion Optimization of Water Supply Systems , 2005, EMO.

[11]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[12]  W. J. Conover,et al.  Practical Nonparametric Statistics , 1972 .

[13]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[14]  Nicola Beume,et al.  SMS-EMOA: Multiobjective selection based on dominated hypervolume , 2007, Eur. J. Oper. Res..

[15]  R. Lyndon While,et al.  A New Analysis of the LebMeasure Algorithm for Calculating Hypervolume , 2005, EMO.

[16]  Nicola Beume,et al.  On the Complexity of Computing the Hypervolume Indicator , 2009, IEEE Transactions on Evolutionary Computation.

[17]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[18]  Marco Laumanns,et al.  SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization , 2002 .

[19]  R. Lyndon While,et al.  A review of multiobjective test problems and a scalable test problem toolkit , 2006, IEEE Transactions on Evolutionary Computation.

[20]  Stefan Roth,et al.  Covariance Matrix Adaptation for Multi-objective Optimization , 2007, Evolutionary Computation.

[21]  Eckart Zitzler,et al.  Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .

[22]  Nicola Beume,et al.  S-Metric Calculation by Considering Dominated Hypervolume as Klee's Measure Problem , 2009, Evolutionary Computation.

[23]  Nicola Beume,et al.  An EMO Algorithm Using the Hypervolume Measure as Selection Criterion , 2005, EMO.

[24]  Lothar Thiele,et al.  On Set-Based Multiobjective Optimization , 2010, IEEE Transactions on Evolutionary Computation.

[25]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[26]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[27]  R. Lyndon While,et al.  A faster algorithm for calculating hypervolume , 2006, IEEE Transactions on Evolutionary Computation.

[28]  Marco Laumanns,et al.  PISA: A Platform and Programming Language Independent Interface for Search Algorithms , 2003, EMO.

[29]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[30]  Nicola Beume,et al.  Pareto-, Aggregation-, and Indicator-Based Methods in Many-Objective Optimization , 2007, EMO.

[31]  Tobias Friedrich,et al.  Approximating the Volume of Unions and Intersections of High-Dimensional Geometric Objects , 2008, ISAAC.

[32]  Luigi Barone,et al.  An evolution strategy with probabilistic mutation for multi-objective optimisation , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[33]  Jürgen Branke,et al.  Multi-objective particle swarm optimization on computer grids , 2007, GECCO '07.

[34]  M. F. Fuller,et al.  Practical Nonparametric Statistics; Nonparametric Statistical Inference , 1973 .

[35]  M. Fleischer,et al.  The Measure of Pareto Optima , 2003, EMO.

[36]  Lucas Bradstreet,et al.  Maximising Hypervolume for Selection in Multi-objective Evolutionary Algorithms , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[37]  H. Schwefel,et al.  Approximating the Pareto Set: Concepts, Diversity Issues, and Performance Assessment , 1999 .

[38]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[39]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[40]  Eckart Zitzler,et al.  Improving hypervolume-based multiobjective evolutionary algorithms by using objective reduction methods , 2007, 2007 IEEE Congress on Evolutionary Computation.

[41]  Mark Fleischer,et al.  The measure of pareto optima: Applications to multi-objective metaheuristics , 2003 .

[42]  Nicola Beume,et al.  Design and Management of Complex Technical Processes and Systems by means of Computational Intelligence Methods Gradient-based / Evolutionary Relay Hybrid for Computing Pareto Front Approximations Maximizing the S-Metric , 2007 .

[43]  Lothar Thiele,et al.  The Hypervolume Indicator Revisited: On the Design of Pareto-compliant Indicators Via Weighted Integration , 2007, EMO.

[44]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[45]  U. Aickelin,et al.  Parallel Problem Solving from Nature - PPSN VIII , 2004, Lecture Notes in Computer Science.

[46]  Lothar Thiele,et al.  An evolutionary algorithm for multiobjective optimization: the strength Pareto approach , 1998 .