Topological Defects and Gapless Modes in Insulators and Superconductors

We develop a unified framework to classify topological defects in insulators and superconductors described by spatially modulated Bloch and Bogoliubov de Gennes Hamiltonians. We consider Hamiltonians Hk,r that vary slowly with adiabatic parameters r surrounding the defect and belong to any of the ten symmetry classes defined by time-reversal symmetry and particle-hole symmetry. The topological classes for such defects are identified and explicit formulas for the topological invariants are presented. We introduce a generalization of the bulk-boundary correspondence that relates the topological classes to defect Hamiltonians to the presence of protected gapless modes at the defect. Many examples of line and point defects in three-dimensional systems will be discussed. These can host one dimensional chiral Dirac fermions, helical Dirac fermions, chiral Majorana fermions, and helical Majorana fermions, as well as zero-dimensional chiral and Majorana zero modes. This approach can also be used to classify temporal pumping cycles, such as the Thouless charge pump, as well as a fermion parity pump, which is related to the Ising non-Abelian statistics of defects that support Majorana zero modes.

[1]  M. Nakahara Geometry, Topology and Physics , 2018 .

[2]  Robert B. Laughlin,et al.  Quantized Hall conductivity in two-dimensions , 1981 .

[3]  Jing Wang,et al.  Dynamical axion field in topological magnetic insulators , 2009, 0908.1537.

[4]  M. Karoubi K-Theory: An Introduction , 1978 .

[5]  Petr Horava Stability of Fermi surfaces and K theory. , 2005, Physical review letters.

[6]  Shou-Cheng Zhang,et al.  Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells , 2006, Science.

[7]  G. Volovik Topological invariant for superfluid 3He-B and quantum phase transitions , 2009, 0909.3084.

[8]  D. Thouless,et al.  Quantised adiabatic charge transport in the presence of substrate disorder and many-body interaction , 1984 .

[9]  C. Kane,et al.  Time Reversal Polarization and a Z 2 Adiabatic Spin Pump , 2006, cond-mat/0606336.

[10]  D. Thouless,et al.  Quantized Hall conductance in a two-dimensional periodic potential , 1992 .

[11]  R. Cava,et al.  Observation of a large-gap topological-insulator class with a single Dirac cone on the surface , 2009 .

[12]  E. Witten An SU(2) anomaly , 1982 .

[13]  Joel E. Moore,et al.  Antiferromagnetic topological insulators , 2010, 1004.1403.

[14]  E. J. Mele,et al.  Z2 topological order and the quantum spin Hall effect. , 2005, Physical review letters.

[15]  Shuang Jia,et al.  Half-Heusler ternary compounds as new multifunctional experimental platforms for topological quantum phenomena. , 2010, Nature materials.

[16]  C. Kane,et al.  Majorana fermions and non-Abelian statistics in three dimensions. , 2009, Physical review letters.

[17]  E. J. Mele,et al.  Quantum spin Hall effect in graphene. , 2004, Physical review letters.

[18]  Claudio Rebbi,et al.  Solitons with Fermion Number 1/2 , 1976 .

[19]  E. Weinberg Index Calculations for the Fermion-Vortex System , 1981 .

[20]  Joel E Moore,et al.  The birth of topological insulators , 2010, Nature.

[21]  R J Cava,et al.  Observation of time-reversal-protected single-dirac-cone topological-insulator states in Bi2Te3 and Sb2Te3. , 2009, Physical review letters.

[22]  Claudia Felser,et al.  Tunable multifunctional topological insulators in ternary Heusler compounds. , 2010, Nature materials.

[23]  Liang Fu,et al.  Topological insulators in three dimensions. , 2006, Physical review letters.

[24]  Jason Alicea,et al.  Majorana fermions in a tunable semiconductor device , 2009, 0912.2115.

[25]  T. Fukui Majorana zero modes bound to a vortex line in a topological superconductor , 2010, 1003.4814.

[26]  Yi Zhang,et al.  One-dimensional topologically protected modes in topological insulators with lattice dislocations , 2009 .

[27]  Z. K. Liu,et al.  Experimental Realization of a Three-Dimensional Topological Insulator , 2010 .

[28]  Shinsei Ryu,et al.  Topological insulators and superconductors: tenfold way and dimensional hierarchy , 2009, 0912.2157.

[29]  R. Bott The Stable Homotopy of the Classical Groups , 1959 .

[30]  D. Thouless,et al.  Quantization of particle transport , 1983 .

[31]  Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures , 1996, cond-mat/9602137.

[32]  Leon Balents,et al.  Mott physics and band topology in materials with strong spin-orbit interaction , 2009, 0907.2962.

[33]  F. Wilczek,et al.  Fractional Quantum Numbers on Solitons , 1981 .

[34]  S Das Sarma,et al.  Generic new platform for topological quantum computation using semiconductor heterostructures. , 2009, Physical review letters.

[35]  S. Das Sarma,et al.  Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures. , 2010, Physical review letters.

[36]  Xiao-Liang Qi,et al.  Topological invariants for the Fermi surface of a time-reversal-invariant superconductor , 2010 .

[37]  Jan Kunes,et al.  Quantum spin Hall effect in a transition metal oxide Na2IrO3. , 2008, Physical review letters.

[38]  Xiao-Liang Qi,et al.  The quantum spin Hall effect and topological insulators , 2010, 1001.1602.

[39]  Xiao-Liang Qi,et al.  Topological field theory of time-reversal invariant insulators , 2008, 0802.3537.

[40]  R. Jackiw,et al.  Zero modes of the vortex-fermion system , 1981 .

[41]  X. Qi,et al.  Time-reversal-invariant topological superconductors and superfluids in two and three dimensions. , 2008, Physical review letters.

[42]  Y. Maeno,et al.  The superconductivity of Sr2RuO4 and the physics of spin-triplet pairing , 2003 .

[43]  Xiao-Liang Qi,et al.  Nonlocal Transport in the Quantum Spin Hall State , 2009, Science.

[44]  L. Fu,et al.  Superconducting proximity effect and majorana fermions at the surface of a topological insulator. , 2007, Physical review letters.

[45]  R. Roy Topological phases and the quantum spin Hall effect in three dimensions , 2009 .

[46]  L. Balents,et al.  Topological invariants of time-reversal-invariant band structures , 2007 .

[47]  Dong Qian,et al.  Topological surface states protected from backscattering by chiral spin texture , 2009, Nature.

[48]  C. Kane,et al.  Observation of Unconventional Quantum Spin Textures in Topological Insulators , 2009, Science.

[49]  L. Molenkamp,et al.  Quantum Spin Hall Insulator State in HgTe Quantum Wells , 2007, Science.

[50]  R. Cava,et al.  A new platform for topological quantum phenomena : Topological Insulator states in thermoelectric Heusler-related ternary compounds , 2010, 1003.0155.

[51]  C. Kane,et al.  Josephson current and noise at a superconductor/quantum-spin-Hall-insulator/superconductor junction , 2008, 0804.4469.

[52]  D. Hsieh,et al.  A topological Dirac insulator in a quantum spin Hall phase , 2008, Nature.

[53]  G. Volovik,et al.  The Universe in a Helium Droplet , 2003 .

[54]  J. Chu,et al.  STM imaging of electronic waves on the surface of Bi2Te3: topologically protected surface states and hexagonal warping effects. , 2009, Physical review letters.

[55]  F. Meier,et al.  A tunable topological insulator in the spin helical Dirac transport regime , 2009, Nature.

[56]  Xi Dai,et al.  Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface , 2009 .

[57]  Alan J. Heeger,et al.  Solitons in polyacetylene , 1979 .

[58]  J. Hietarinta,et al.  Unwinding in Hopfion vortex bunches , 2009, 0904.1305.

[59]  L. Molenkamp,et al.  The Quantum Spin Hall Effect: Theory and Experiment , 2008, 0801.0901.

[60]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[61]  T. Fukui,et al.  Topological stability of Majorana zero-modes in superconductor-topological insulator systems , 2009, 0911.2558.

[62]  P. Grinevich,et al.  Topology of gap nodes in superfluid3He: π4 Homotopy group for3He-B disclination , 1988 .

[63]  E. I. Blount Formalisms of Band Theory , 1962 .

[64]  Shinsei Ryu,et al.  Classification of topological insulators and superconductors in three spatial dimensions , 2008, 0803.2786.

[65]  N. Read,et al.  Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect , 1999, cond-mat/9906453.

[66]  P. Roushan,et al.  p -type Bi 2 Se 3 for topological insulator and low-temperature thermoelectric applications , 2009 .

[67]  Liang Fu,et al.  Topological insulators with inversion symmetry , 2006, cond-mat/0611341.

[68]  D. Song,et al.  Quasiparticle scattering and the protected nature of the topological states in a parent topological insulator Bi 2 Se 3 , 2009, 0912.3883.