Tunable single-longitudinal-mode operation of a sandwich-type YAG/Ho:YAG/YAG ceramic laser

[1]  Kyle J. Daun,et al.  Quantifying uncertainty in soot volume fraction estimates using Bayesian inference of auto-correlated laser-induced incandescence measurements , 2016 .

[2]  Y. Ju,et al.  Resonantly pumped single-longitudinal-mode Ho:YAG laser , 2016 .

[3]  Y. Ju,et al.  Experimental study into single-longitudinal-mode Tm,Ho:YVO4 lasers , 2015 .

[4]  Y. Ju,et al.  A 52-mJ Ho:YAG Master Oscillator and Power Amplifier with Kilohertz Pulse Repetition Frequency , 2014 .

[5]  Wang Ji,et al.  A Graphene-Based Passively Q-Switched Ho:YAG Laser , 2014 .

[6]  Xin-lu Zhang,et al.  Diode-end-pumped continuously tunable single frequency Tm, Ho:LLF laser at 2.06 μm. , 2014, Applied optics.

[7]  Chun-qing Gao,et al.  A resonantly-pumped tunable Q-switched Ho:YAG ceramic laser with diffraction-limit beam quality. , 2014, Optics express.

[8]  姚宝权,et al.  A 52-mJ Ho:YAG Master Oscillator and Power Amplifier with Kilohertz Pulse Repetition Frequency , 2014 .

[9]  Jianlong Yang,et al.  Directly Diode-Pumped Ho:YAG Ceramic Laser , 2013, IEEE Photonics Technology Letters.

[10]  B. Yao,et al.  A single longitudinal mode Tm, Ho:YLF laser with a continuously tunable frequency of 2.1 GHz with double F–P etalons , 2013 .

[11]  Lei Wang,et al.  Resonantly pumped monolithic nonplanar Ho:YAG ring laser with high-power single-frequency laser output at 2122 nm. , 2013, Optics express.

[12]  M. Esser,et al.  330 mJ single-frequency Ho:YLF slab amplifier. , 2013, Optics letters.

[13]  Jianguo Zhu,et al.  Densification and optical properties of transparent Ho:YAG ceramics , 2013 .

[14]  Xiaoming Duan,et al.  Single-frequency, injection-seeded Q-switched operation of a resonantly pumped Ho:YAlO3 laser at 2,118 nm , 2013 .

[15]  Tongyu Dai,et al.  Single-frequency, Q-switched Ho:YAG laser at room temperature injection-seeded by two F-P etalons-restricted Tm, Ho:YAG laser. , 2012, Optics letters.

[16]  Ran Wang,et al.  2 μm single-frequency Tm:YAG laser generated from a diode-pumped L-shaped twisted mode cavity , 2012 .

[17]  S. Lamrini,et al.  Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm , 2011, Applied Physics B.

[18]  L. Wang,et al.  Fabrication, properties and laser performance of Ho:YAG transparent ceramic , 2010 .

[19]  Suhui Yang,et al.  High efficient single-frequency output at 1991 nm from a diode-pumped Tm:YAP coupled cavity. , 2010, Optics express.

[20]  C. T. Wu,et al.  A single-longitudinal-mode CW 0.25 mm Tm,Ho:GdVO4 Microchip Laser , 2010 .

[21]  Xuewen Cheng,et al.  Ho:YAG ceramic laser pumped by Tm:YLF lasers at room temperature , 2010 .

[22]  M. Esser,et al.  Compact fibre-laser-pumped Ho:YLF oscillator–amplifier system , 2010, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[23]  Y. Ju,et al.  Room temperature efficient continuous wave and Q-switched operation of a Ho:YAP laser , 2009 .

[24]  C. Nagasawa,et al.  Characteristics of single longitudinal mode oscillation of the 2 μm Tm,Ho:YLF microchip laser , 2001 .

[25]  D. Killinger,et al.  Dual-polarization modes and self-heterodyne noise in a single-frequency 2.1-microm microchip Ho,Tm:YAG laser. , 1994, Optics letters.