A review of machine learning approaches to Spam filtering

[1]  Geoffrey I. Webb Lazy Learning , 2010, Encyclopedia of Machine Learning.

[2]  Chih-Hung Wu,et al.  Behavior-based spam detection using a hybrid method of rule-based techniques and neural networks , 2009, Expert Syst. Appl..

[3]  Juan M. Corchado,et al.  Managing irrelevant knowledge in CBR models for unsolicited e-mail classification , 2009, Expert Syst. Appl..

[4]  Enrico Blanzieri,et al.  A survey of learning-based techniques of email spam filtering , 2008, Artificial Intelligence Review.

[5]  Binshan Lin,et al.  Collaborative spam filtering with heterogeneous agents , 2008, Expert Syst. Appl..

[6]  Luis Mateus Rocha,et al.  Adaptive Spam Detection Inspired by a Cross-Regulation Model of Immune Dynamics: A Study of Concept Drift , 2008, ICARIS.

[7]  Thiago S. Guzella,et al.  Identification of SPAM messages using an approach inspired on the immune system , 2008, Biosyst..

[8]  Chih-Ping Wei,et al.  Effective spam filtering: A single-class learning and ensemble approach , 2008, Decis. Support Syst..

[9]  Yan Zhou,et al.  A Multiple Instance Learning Strategy for Combating Good Word Attacks on Spam Filters , 2008, J. Mach. Learn. Res..

[10]  Bo Yu,et al.  A comparative study for content-based dynamic spam classification using four machine learning algorithms , 2008, Knowl. Based Syst..

[11]  Shichao Zhang,et al.  Empirical likelihood confidence intervals for differences between two datasets with missing data , 2008, Pattern Recognit. Lett..

[12]  Te-Ming Chang,et al.  An incremental cluster-based approach to spam filtering , 2008, Expert Syst. Appl..

[13]  Georges Zaccour,et al.  Competing for consumer's attention , 2008, Autom..

[14]  Fayez Gebali,et al.  Binary LNS-based naive Bayes inference engine for spam control: noise analysis and FPGA implementation , 2008, IET Comput. Digit. Tech..

[15]  Fabio Roli,et al.  Improving Image Spam Filtering Using Image Text Features , 2008, CEAS.

[16]  D. Sculley,et al.  Filtering Email Spam in the Presence of Noisy User Feedback , 2008, CEAS.

[17]  Tunga Güngör,et al.  Time-efficient spam e-mail filtering using n-gram models , 2008, Pattern Recognit. Lett..

[18]  Henry Stern,et al.  A Survey of Modern Spam Tools , 2008, CEAS.

[19]  Efstathios Stamatatos,et al.  Words versus Character n-Grams for Anti-Spam Filtering , 2007, Int. J. Artif. Intell. Tools.

[20]  Evgeniy Gabrilovich,et al.  Harnessing the Expertise of 70, 000 Human Editors: Knowledge-Based Feature Generation for Text Categorization , 2007, J. Mach. Learn. Res..

[21]  Aristidis Likas,et al.  Deep Belief Networks for Spam Filtering , 2007, 19th IEEE International Conference on Tools with Artificial Intelligence(ICTAI 2007).

[22]  Eduardo Conde,et al.  An HMM for detecting spam mail , 2007, Expert Syst. Appl..

[23]  Alexander K. Seewald,et al.  An evaluation of Naive Bayes variants in content-based learning for spam filtering , 2007, Intell. Data Anal..

[24]  Fabio Roli,et al.  Image Spam Filtering Using Visual Information , 2007, 14th International Conference on Image Analysis and Processing (ICIAP 2007).

[25]  David Zhang,et al.  Five New Feature Selection Metrics in Text Categorization , 2007, Int. J. Pattern Recognit. Artif. Intell..

[26]  Ohm Sornil,et al.  An artificial immunity-based spam detection system , 2007, 2007 IEEE Congress on Evolutionary Computation.

[27]  Ying Tan,et al.  Intelligent Detection Approaches for Spam , 2007, Third International Conference on Natural Computation (ICNC 2007).

[28]  Chih-Chien Wang,et al.  Using header session messages to anti-spamming , 2007, Comput. Secur..

[29]  Yan Zhou,et al.  Adaptive Spam Filtering Using Dynamic Feature Spaces , 2007, Int. J. Artif. Intell. Tools.

[30]  Virgílio A. F. Almeida,et al.  Workload models of spam and legitimate e-mails , 2007, Perform. Evaluation.

[31]  D. Sculley,et al.  Relaxed online SVMs for spam filtering , 2007, SIGIR.

[32]  Gordon V. Cormack,et al.  Online supervised spam filter evaluation , 2007, TOIS.

[33]  Jangbok Kim,et al.  Spam Filtering With Dynamically Updated URL Statistics , 2007, IEEE Security & Privacy.

[34]  Juan M. Corchado,et al.  Applying lazy learning algorithms to tackle concept drift in spam filtering , 2007, Expert Syst. Appl..

[35]  Yuchun Tang,et al.  Identifying Image Spam based on Header and File Properties using C4.5 Decision Trees and Support Vector Machine Learning , 2007, 2007 IEEE SMC Information Assurance and Security Workshop.

[36]  Peter Haider,et al.  Supervised clustering of streaming data for email batch detection , 2007, ICML '07.

[37]  Irena Koprinska,et al.  Learning to classify e-mail , 2007, Inf. Sci..

[38]  Laurent Younes,et al.  A Stochastic Algorithm for Feature Selection in Pattern Recognition , 2007, J. Mach. Learn. Res..

[39]  Chih-Chin Lai,et al.  An empirical study of three machine learning methods for spam filtering , 2007, Knowl. Based Syst..

[40]  Juan M. Corchado,et al.  SpamHunting: An instance-based reasoning system for spam labelling and filtering , 2007, Decis. Support Syst..

[41]  Ajith Abraham,et al.  Artificial immune system inspired behavior-based anti-spam filter , 2007, Soft Comput..

[42]  Gordon V. Cormack,et al.  Spam and the ongoing battle for the inbox , 2007, CACM.

[43]  Sarah Jane Delany,et al.  Textual case-based reasoning for spam filtering: a comparison of feature-based and feature-free approaches , 2006, Artificial Intelligence Review.

[44]  D. Sculley,et al.  Relaxed Online SVMs in the TREC Spam Filtering Track , 2007, TREC.

[45]  Mark Dredze,et al.  Learning Fast Classifiers for Image Spam , 2007, CEAS.

[46]  Richard Segal,et al.  Combining Global and Personal Anti-Spam Filtering , 2007, CEAS.

[47]  Bo Thiesson,et al.  Asymmetric Gradient Boosting with Application to Spam Filtering , 2007, CEAS.

[48]  D. Sculley,et al.  Online Active Learning Methods for Fast Label-Efficient Spam Filtering , 2007, CEAS.

[49]  Calton Pu,et al.  A Discriminative Classifier Learning Approach to Image Modeling and Spam Image Identification , 2007, CEAS.

[50]  Jean-Yves Le Boudec,et al.  Artificial Immune System for Collaborative Spam Filtering , 2007, NICSO.

[51]  Dit-Yan Yeung,et al.  A learning approach to spam detection based on social networks , 2007 .

[52]  B. Hayes How many ways can you spell V1@gra? , 2007 .

[53]  Zhe Wang,et al.  Filtering Image Spam with Near-Duplicate Detection , 2007, CEAS.

[54]  Steffen Bickel,et al.  Dirichlet-Enhanced Spam Filtering based on Biased Samples , 2006, NIPS.

[55]  Fabio Roli,et al.  Spam Filtering Based On The Analysis Of Text Information Embedded Into Images , 2006, J. Mach. Learn. Res..

[56]  Vasilios Zorkadis,et al.  Efficient information theoretic extraction of higher order features for improving neural network-based spam e-mail categorization , 2006, J. Exp. Theor. Artif. Intell..

[57]  Blaz Zupan,et al.  Spam Filtering Using Statistical Data Compression Models , 2006, J. Mach. Learn. Res..

[58]  Ray Hunt,et al.  Tightening the net: A review of current and next generation spam filtering tools , 2006, Comput. Secur..

[59]  Wagner Meira,et al.  Lazy Associative Classification for Content-based Spam Detection , 2006, 2006 Fourth Latin American Web Congress.

[60]  Gareth J. F. Jones,et al.  Using online linear classifiers to filter spam emails , 2006, Pattern Analysis and Applications.

[61]  Mark Levene,et al.  A suffix tree approach to anti-spam email filtering , 2006, Machine Learning.

[62]  Paul A. Viola,et al.  Corrective feedback and persistent learning for information extraction , 2006, Artif. Intell..

[63]  Fernando José Von Zuben,et al.  An Immunological Filter for Spam , 2006, ICARIS.

[64]  Joshua Goodman,et al.  Online Discriminative Spam Filter Training , 2006, CEAS.

[65]  Geoff Hulten,et al.  Learning at Low False Positive Rates , 2006, CEAS.

[66]  Tim Oates,et al.  Detecting Spam Blogs: A Machine Learning Approach , 2006, AAAI.

[67]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[68]  Bogdan Hoanca,et al.  How good are our weapons in the spam wars? , 2006, IEEE Technology and Society Magazine.

[69]  Richard Segal,et al.  Fast Uncertainty Sampling for Labeling Large E-mail Corpora , 2006, CEAS.

[70]  Ben Medlock An Adaptive, Semi-Structured Language Model Approach to Spam Filtering on a New Corpus , 2006, CEAS.

[71]  Georgios Paliouras,et al.  Learning to Filter Unsolicited Commercial E-Mail , 2006 .

[72]  Calton Pu,et al.  Observed Trends in Spam Construction Techniques: A Case Study of Spam Evolution , 2006, CEAS.

[73]  Gordon V. Cormack,et al.  TREC 2006 Spam Track Overview , 2006, TREC.

[74]  Vangelis Metsis,et al.  Spam Filtering with Naive Bayes - Which Naive Bayes? , 2006, CEAS.

[75]  Xiao Luo,et al.  Comparison of a SOM based sequence analysis system and naive Bayesian classifier for spam filtering , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[76]  Calton Pu,et al.  An experimental evaluation of spam filter performance and robustness against attack , 2005, 2005 International Conference on Collaborative Computing: Networking, Applications and Worksharing.

[77]  I. Cloete,et al.  Learning to classify email: a survey , 2005, 2005 International Conference on Machine Learning and Cybernetics.

[78]  Padraig Cunningham,et al.  An Assessment of Case-Based Reasoning for Spam Filtering , 2005, Artificial Intelligence Review.

[79]  James A. Herson,et al.  Image analysis for efficient categorization of image-based spam e-mail , 2005, Eighth International Conference on Document Analysis and Recognition (ICDAR'05).

[80]  Tony White,et al.  Immunity from Spam: An Analysis of an Artificial Immune System for Junk Email Detection , 2005, ICARIS.

[81]  Vasilios Zorkadis,et al.  Efficient information theoretic strategies for classifier combination, feature extraction and performance evaluation in improving false positives and false negatives for spam e-mail filtering , 2005, Neural Networks.

[82]  Zili Zhang,et al.  An email classification model based on rough set theory , 2005, Proceedings of the 2005 International Conference on Active Media Technology, 2005. (AMT 2005)..

[83]  Francesco Camastra,et al.  A novel kernel method for clustering , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[84]  Hector Garcia-Molina,et al.  Web Spam Taxonomy , 2005, AIRWeb.

[85]  Padraig Cunningham,et al.  A case-based technique for tracking concept drift in spam filtering , 2004, Knowl. Based Syst..

[86]  Kwang-Ting Cheng,et al.  Using visual features for anti-spam filtering , 2005, IEEE International Conference on Image Processing 2005.

[87]  Tianshun Yao,et al.  An evaluation of statistical spam filtering techniques , 2004, TALIP.

[88]  Levent Özgür,et al.  Adaptive anti-spam filtering for agglutinative languages: a special case for Turkish , 2004, Pattern Recognit. Lett..

[89]  Jiawei Han,et al.  PEBL: Web page classification without negative examples , 2004, IEEE Transactions on Knowledge and Data Engineering.

[90]  Jörg Kindermann,et al.  Text Categorization with Support Vector Machines. How to Represent Texts in Input Space? , 2002, Machine Learning.

[91]  Georgios Paliouras,et al.  A Memory-Based Approach to Anti-Spam Filtering for Mailing Lists , 2004, Information Retrieval.

[92]  Tom Fawcett,et al.  "In vivo" spam filtering: a challenge problem for KDD , 2003, SKDD.

[93]  Irena Koprinska,et al.  A neural network based approach to automated e-mail classification , 2003, Proceedings IEEE/WIC International Conference on Web Intelligence (WI 2003).

[94]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[95]  Tony White,et al.  Developing an Immunity to Spam , 2003, GECCO.

[96]  Karl-Michael Schneider,et al.  A Comparison of Event Models for Naive Bayes Anti-Spam E-Mail Filtering , 2003, EACL.

[97]  Gary Robinson,et al.  A statistical approach to the spam problem , 2003 .

[98]  Tony White,et al.  Increasing the accuracy of a spam-detecting artificial immune system , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[99]  Jonathan Timmis,et al.  Artificial Immune Systems: A New Computational Intelligence Approach , 2003 .

[100]  Jonathan Timmis,et al.  Artificial immune systems - a new computational intelligence paradigm , 2002 .

[101]  Fabrizio Sebastiani,et al.  Machine learning in automated text categorization , 2001, CSUR.

[102]  Rémi Gilleron,et al.  Text Classification from Positive and Unlabeled Examples , 2002 .

[103]  Bernhard Schölkopf,et al.  Learning with kernels , 2001 .

[104]  Lluís Màrquez i Villodre,et al.  Boosting Trees for Anti-Spam Email Filtering , 2001, ArXiv.

[105]  George Eastman House,et al.  Sparse Bayesian Learning and the Relevance Vector Machine , 2001 .

[106]  Constantine D. Spyropoulos,et al.  An experimental comparison of naive Bayesian and keyword-based anti-spam filtering with personal e-mail messages , 2000, SIGIR '00.

[107]  Georgios Paliouras,et al.  An evaluation of Naive Bayesian anti-spam filtering , 2000, ArXiv.

[108]  J. Nazuno Haykin, Simon. Neural networks: A comprehensive foundation, Prentice Hall, Inc. Segunda Edición, 1999 , 2000 .

[109]  Thorsten Joachims,et al.  Text categorization with support vector machines , 1999 .

[110]  Harris Drucker,et al.  Support vector machines for spam categorization , 1999, IEEE Trans. Neural Networks.

[111]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[112]  Susan T. Dumais,et al.  A Bayesian Approach to Filtering Junk E-Mail , 1998, AAAI 1998.

[113]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[114]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[115]  Agnar Aamodt,et al.  Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches , 1994, AI Commun..