Plasmonic IQ modulators with attojoule per bit electrical energy consumption

Coherent optical communications provides the largest data transmission capacity with the highest spectral efficiency and therefore has a remarkable potential to satisfy today’s ever-growing bandwidth demands. It relies on so-called in-phase/quadrature (IQ) electro-optic modulators that encode information on both the amplitude and the phase of light. Ideally, such IQ modulators should offer energy-efficient operation and a most compact footprint, which would allow high-density integration and high spatial parallelism. Here, we present compact IQ modulators with an active section occupying a footprint of 4 × 25 µm × 3 µm, fabricated on the silicon platform and operated with sub-1-V driving electronics. The devices exhibit low electrical energy consumptions of only 0.07 fJ bit−1 at 50 Gbit s−1, 0.3 fJ bit−1 at 200 Gbit s−1, and 2 fJ bit−1 at 400 Gbit s−1. Such IQ modulators may pave the way for application of IQ modulators in long-haul and short-haul communications alike.Increasing bandwidth demands in optical communications requires components to be compact with energy-efficient operation. Here, the authors demonstrate plasmonic IQ modulators on a silicon photonics platform with phase shifters, operating with sub-1V electronics at 100 GBaud and low electrical energy consumption.

[1]  T. Kawanishi,et al.  Single side-band modulation performance of a LiNbO3 integrated modulator consisting of four-phase modulator waveguides , 2001, IEEE Photonics Technology Letters.

[2]  Kazuro Kikuchi,et al.  Fundamentals of Coherent Optical Fiber Communications , 2016, Journal of Lightwave Technology.

[3]  D Hillerkuss,et al.  Plasmonic modulator with >170 GHz bandwidth demonstrated at 100 GBd NRZ. , 2017, Optics express.

[4]  M. Nakamura,et al.  Ultra-High Bandwidth InP IQ Modulator co-assembled with Driver IC for Beyond 100-GBd CDM , 2018, 2018 Optical Fiber Communications Conference and Exposition (OFC).

[5]  C. Huyghebaert,et al.  Graphene–silicon phase modulators with gigahertz bandwidth , 2017, Nature Photonics.

[6]  S. Chandrasekhar,et al.  180-GBaud All-ETDM Single-Carrier Polarization Multiplexed QPSK Transmission over 4480 km , 2018, 2018 Optical Fiber Communications Conference and Exposition (OFC).

[7]  J. Leuthold,et al.  100 GBd Plasmonic IQ Modulator , 2018, 2018 Conference on Lasers and Electro-Optics (CLEO).

[8]  Naoki Suzuki,et al.  100 Gb/s to 1 Tb/s Based Coherent Passive Optical Network Technology , 2018, Journal of Lightwave Technology.

[9]  B. Behnia,et al.  Multi-channel InP-based Coherent PICs with Hybrid Integrated SiGe Electronics Operating up to 100 GBd, 32QAM , 2017, 2017 European Conference on Optical Communication (ECOC).

[10]  Gregory Raybon,et al.  Silicon in-phase/quadrature modulator with on-chip optical equalizer , 2015, 2014 The European Conference on Optical Communication (ECOC).

[11]  Alireza Samani,et al.  First demonstration of a 400 Gb/s 4λ CWDM TOSA for datacenter optical interconnects. , 2018, Optics express.

[12]  Laurent Schmalen,et al.  Single carrier 1.2 Tbit/s transmission over 300 km with PM-64 QAM at 100 GBaud , 2017, 2017 Optical Fiber Communications Conference and Exhibition (OFC).

[13]  Ronny Henker,et al.  Survey of Photonic and Plasmonic Interconnect Technologies for Intra-Datacenter and High-Performance Computing Communications , 2018, IEEE Communications Surveys & Tutorials.

[14]  Juerg Leuthold,et al.  Optical Transmitters without Driver Amplifiers—Optimal Operation Conditions , 2018, Applied Sciences.

[15]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[16]  D. Blayney,et al.  Challenges and solutions. , 2007, Journal of oncology practice.

[17]  R Schmogrow,et al.  512QAM Nyquist sinc-pulse transmission at 54 Gbit/s in an optical bandwidth of 3 GHz. , 2012, Optics express.

[18]  David Hillerkuss,et al.  Plasmonic Organic Hybrid Modulators—Scaling Highest Speed Photonics to the Microscale , 2016, Proceedings of the IEEE.

[19]  M. Lauermann,et al.  Ultra-high electro-optic activity demonstrated in a silicon-organic hybrid modulator , 2017, Optica.

[20]  C. Hoessbacher Plasmonic Switches and Modulators for Optical Communications , 2017 .

[21]  C. Doerr,et al.  Silicon photonic integration in telecommunications , 2015, Front. Phys..

[22]  L. Dalton,et al.  Organic Electro-Optics and Photonics: Molecules, Polymers, and Crystals Larry R. Dalton, Peter Günter, Mojca Jazbinsek, O-Pil Kwon, and Philip A. Sullivan , 2015 .

[23]  A. Biberman,et al.  An ultralow power athermal silicon modulator , 2014, Nature Communications.

[24]  Juerg Leuthold,et al.  Harnessing nonlinearities near material absorption resonances for reducing losses in plasmonic modulators , 2017 .

[25]  C Koos,et al.  Coherent modulation up to 100 GBd 16QAM using silicon-organic hybrid (SOH) devices. , 2018, Optics express.

[26]  Ricardo M. Ferreira,et al.  Coherent Access: A Review , 2017, Journal of Lightwave Technology.

[27]  L. Dalton,et al.  Optimization of plasmonic-organic hybrid electro-optics , 2018, 2017 IEEE Avionics and Vehicle Fiber-Optics and Photonics Conference (AVFOP).

[28]  J. Leuthold,et al.  High-speed plasmonic modulator in a single metal layer , 2017, Science.

[29]  R. Soref,et al.  The Past, Present, and Future of Silicon Photonics , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[30]  Ryohei Urata,et al.  Scaling large data center interconnects: Challenges and solutions , 2017, Optical Fiber Technology.

[31]  Wolfgang Freude,et al.  Silicon–Organic and Plasmonic–Organic Hybrid Photonics , 2017 .

[32]  Juerg Leuthold,et al.  Nonlinearities of organic electro-optic materials in nanoscale slots and implications for the optimum modulator design. , 2017, Optics express.

[33]  Rajeev J. Ram,et al.  Single-chip microprocessor that communicates directly using light , 2015, Nature.

[34]  C. Doerr Coherent Optics in Si Photonics , 2018, 2018 Optical Fiber Communications Conference and Exposition (OFC).

[35]  P. Winzer,et al.  Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages , 2018, Nature.

[36]  Xian Xu,et al.  Constellation Shaped 66 GBd DP-1024QAM Transceiver with 400 km Transmission over Standard SMF , 2017, 2017 European Conference on Optical Communication (ECOC).

[37]  Juerg Leuthold,et al.  Ultra-Compact Terabit Plasmonic Modulator Array , 2019, Journal of Lightwave Technology.

[38]  Volker J. Sorger,et al.  Scaling vectors of attoJoule per bit modulators , 2017 .

[39]  Hermann Massler,et al.  500 GHz plasmonic Mach-Zehnder modulator enabling sub-THz microwave photonics , 2018, APL Photonics.

[40]  David A. B. Miller Attojoule Optoelectronics for Low-Energy Information Processing and Communications , 2017, Journal of Lightwave Technology.

[41]  Wolfgang Freude,et al.  Femtojoule electro-optic modulation using a silicon–organic hybrid device , 2015, Light: Science & Applications.

[42]  William M. J. Green,et al.  Monolithic 56 Gb/s silicon photonic pulse-amplitude modulation transmitter , 2016, 1608.07563.

[43]  T. Zwick,et al.  Terahertz-to-Optical Conversion Using a Plasmonic Modulator , 2018, 2018 Conference on Lasers and Electro-Optics (CLEO).

[44]  Raluca Dinu,et al.  High-speed plasmonic phase modulators , 2014, Nature Photonics.

[45]  David Hillerkuss,et al.  All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale , 2015, Nature Photonics.

[46]  E.L. Wooten,et al.  A review of lithium niobate modulators for fiber-optic communications systems , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[47]  Qianfan Xu,et al.  Micrometre-scale silicon electro-optic modulator , 2005, Nature.

[48]  Juerg Leuthold,et al.  Three-Dimensional Phase Modulator at Telecom Wavelength Acting as a Terahertz Detector with an Electro-Optic Bandwidth of 1.25 Terahertz , 2018 .

[49]  M. Winter,et al.  Error Vector Magnitude as a Performance Measure for Advanced Modulation Formats , 2012, IEEE Photonics Technology Letters.

[50]  Robert A. Griffin,et al.  10 Gb/s optical differential quadrature phase shift key (DQPSK) transmission using GaAs/AlGaAs integration , 2002, Optical Fiber Communication Conference and Exhibit.

[51]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[52]  D. Pile,et al.  Two-dimensionally localized modes of a nanoscale gap plasmon waveguide , 2005 .

[53]  S. Hayashi,et al.  Plasmonics: visit the past to know the future , 2012 .

[54]  David A B Miller,et al.  Energy consumption in optical modulators for interconnects. , 2012, Optics express.

[55]  Peter J. Winzer,et al.  From Scaling Disparities to Integrated Parallelism: A Decathlon for a Decade , 2017, Journal of Lightwave Technology.

[56]  C. Hafner,et al.  Electrically Controlled Plasmonic Switches and Modulators , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[57]  Masataka Nakazawa,et al.  200 Gbit/s, 10 Gsymbol/s-1024 QAM Injection Locked Coherent Transmission over 160 km with a Pilot-assisted Adaptive Equalizer , 2018, 2018 23rd Opto-Electronics and Communications Conference (OECC).

[58]  D Hillerkuss,et al.  High speed plasmonic modulator array enabling dense optical interconnect solutions. , 2015, Optics express.

[59]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[60]  Raluca Dinu,et al.  EO polymer modulators reliability study , 2010, OPTO.

[61]  D. Hillerkuss,et al.  108 Gbit/s Plasmonic Mach–Zehnder Modulator with > 70-GHz Electrical Bandwidth , 2016, Journal of Lightwave Technology.

[62]  E. Yamada,et al.  Over 67 GHz Bandwidth and 1.5 V Vπ InP-Based Optical IQ Modulator With n-i-p-n Heterostructure , 2017, Journal of Lightwave Technology.

[63]  Juerg Leuthold,et al.  Perpendicular Grating Coupler Based on a Blazed Antiback-Reflection Structure , 2017, Journal of Lightwave Technology.

[64]  P. Zakynthinos,et al.  Monolithic GaAs Electro-Optic IQ Modulator Demonstrated at 150 Gbit/s With 64QAM , 2014, Journal of Lightwave Technology.

[65]  Jingdong Luo,et al.  Tailored Organic Electro-optic Materials and Their Hybrid Systems for Device Applications† , 2011 .

[66]  Juerg Leuthold,et al.  Effect of Rigid Bridge-Protection Units, Quadrupolar Interactions, and Blending in Organic Electro-Optic Chromophores , 2017 .

[67]  Raluca Dinu,et al.  Silicon-Organic Hybrid Electro-Optical Devices , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[68]  Huihui Lu,et al.  Photonic Packaging: Transforming Silicon Photonic Integrated Circuits into Photonic Devices , 2016 .

[69]  Juerg Leuthold,et al.  Driver-Less Sub 1 Vpp Operation of a Plasmonic-Organic Hybrid Modulator at 100 GBd NRZ , 2018, 2018 Optical Fiber Communications Conference and Exposition (OFC).

[70]  P. Dumon,et al.  Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology , 2005, Journal of Lightwave Technology.

[71]  A. Adamiecki,et al.  Single-carrier all-ETDM 1.08-Terabit/s line rate PDM-64-QAM transmitter using a high-speed 3-bit multiplexing DAC , 2015, 2015 IEEE Photonics Conference (IPC).

[72]  C. Koos,et al.  Generation of 64 GBd 4ASK signals using a silicon-organic hybrid modulator at 80°C. , 2016, Optics express.

[73]  Evon M. O. Abu-Taieh,et al.  Comparative Study , 2020, Definitions.

[74]  J. Leuthold,et al.  Plasmonic Ferroelectric Modulators , 2019, Journal of Lightwave Technology.

[75]  V. Shalaev,et al.  1 Supplementary Information : Low loss Plasmon-assisted electro-optic modulator , 2018 .

[76]  Jiachuan Lin,et al.  CMOS-Compatible Silicon Photonic IQ Modulator for 84 Gbaud 16QAM and 70 Gbaud 32QAM , 2018, 2018 Optical Fiber Communications Conference and Exposition (OFC).

[77]  G. Contestabile,et al.  Graphene Phase Modulator , 2017, 1704.01525.

[78]  Larry R Dalton,et al.  Electric field poled organic electro-optic materials: state of the art and future prospects. , 2010, Chemical reviews.

[79]  Philippe Pretre,et al.  Relaxation Processes in Nonlinear Optical Polyimide Side-Chain Polymers , 1996 .