Fossilized Nuclei and Germination Structures Identify Ediacaran “Animal Embryos” as Encysting Protists

High-resolution imaging of 570-million-year-old fossils suggests that they were not remnants of early animals. Globular fossils showing palintomic cell cleavage in the Ediacaran Doushantuo Formation, China, are widely regarded as embryos of early metazoans, although metazoan synapomorphies, tissue differentiation, and associated juveniles or adults are lacking. We demonstrate using synchrotron-based x-ray tomographic microscopy that the fossils have features incompatible with multicellular metazoan embryos. The developmental pattern is comparable with nonmetazoan holozoans, including germination stages that preclude postcleavage embryology characteristic of metazoans. We conclude that these fossils are neither animals nor embryos. They belong outside crown-group Metazoa, within total-group Holozoa (the sister clade to Fungi that includes Metazoa, Choanoflagellata, and Mesomycetozoea) or perhaps on even more distant branches in the eukaryote tree. They represent an evolutionary grade in which palintomic cleavage served the function of producing propagules for dispersion.

[1]  F. Gao,et al.  Petrographic analysis of new specimens of the putative microfossil Vernanimalcula guizhouena (Doushantuo Formation, South China) , 2013 .

[2]  Gang Li,et al.  Early embryogenesis of potential bilaterian animals with polar lobe formation from the Ediacaran Weng'an Biota, South China , 2013 .

[3]  A. Knoll,et al.  Comment on “Fossilized Nuclei and Germination Structures Identify Ediacaran ‘Animal Embryos’ as Encysting Protists” , 2012, Science.

[4]  James D. Schiffbauer,et al.  The origin of intracellular structures in Ediacaran metazoan embryos , 2012 .

[5]  Alan Boyde,et al.  From Flat Foot to Fat Foot: Structure, Ontogeny, Function, and Evolution of Elephant “Sixth Toes” , 2011, Science.

[6]  M. Berbee,et al.  Facing unknowns: living cultures (Pirum gemmata gen. nov., sp. nov., and Abeoforma whisleri, gen. nov., sp. nov.) from invertebrate digestive tracts represent an undescribed clade within the unicellular Opisthokont lineage ichthyosporea (Mesomycetozoea). , 2011, Protist.

[7]  J. Sommerville Using oocyte nuclei for studies on chromatin structure and gene expression. , 2010, Methods.

[8]  R. Michod,et al.  EVOLUTION OF DEVELOPMENTAL PROGRAMS IN VOLVOX (CHLOROPHYTA) 1 , 2010 .

[9]  R. Michod,et al.  EVOLUTION OF DEVELOPMENTAL PROGRAMS IN VOLVOX (CHLOROPHYTA) , 2010 .

[10]  Feng Gao,et al.  Complex embryos displaying bilaterian characters from Precambrian Doushantuo phosphate deposits, Weng'an, Guizhou, China , 2009, Proceedings of the National Academy of Sciences.

[11]  Feng Gao,et al.  Phase contrast synchrotron X-ray microtomography of Ediacaran (Doushantuo) metazoan microfossils: Phylogenetic diversity and evolutionary implications , 2009 .

[12]  Peter V. Troshin,et al.  The origin of Metazoa: a transition from temporal to spatial cell differentiation , 2009, BioEssays : news and reviews in molecular, cellular and developmental biology.

[13]  A. Knoll,et al.  Large spinose microfossils in Ediacaran rocks as resting stages of early animals , 2009, Proceedings of the National Academy of Sciences.

[14]  G. Freeman The rise of bilaterians , 2009 .

[15]  N. Gostling,et al.  ONTOGENY AND TAPHONOMY: AN EXPERIMENTAL TAPHONOMY STUDY OF THE DEVELOPMENT OF THE BRINE SHRIMP ARTEMIA SALINA , 2009 .

[16]  Gao Lin-zhi New data of phosphatized globular fossils from Weng'an biota in the Ediacaran Doushantuo Formation and the problem concerning their affinity , 2009 .

[17]  R. Raff,et al.  Embryo fossilization is a biological process mediated by microbial biofilms , 2008, Proceedings of the National Academy of Sciences.

[18]  T. Hirata,et al.  Ca isotopic compositions of dolomite, phosphorite and the oldest animal embryo fossils from the Neoproterozoic in Weng'an, South China , 2008 .

[19]  B. Leander A Hierarchical View of Convergent Evolution in Microbial Eukaryotes 1 , 2008, The Journal of eukaryotic microbiology.

[20]  M. Fedonkin The Rise of Animals: Evolution and Diversification of the Kingdom Animalia , 2008 .

[21]  D. Verma,et al.  Cell division control in plants , 2008 .

[22]  Maoyan Zhu,et al.  Integrated Ediacaran (Sinian) chronostratigraphy of South China , 2007 .

[23]  S. Joye,et al.  Palaeontology: Undressing and redressing Ediacaran embryos (Reply) , 2007, Nature.

[24]  A. Knoll,et al.  Doushantuo embryos preserved inside diapause egg cysts , 2007, Nature.

[25]  S. Xiao,et al.  Palaeontology: Undressing and redressing Ediacaran embryos , 2007, Nature.

[26]  J. Hagadorn,et al.  Rare helical spheroidal fossils from the Doushantuo Lagerstätte: Ediacaran animal embryos come of age? , 2007 .

[27]  S. Joye,et al.  Evidence of giant sulphur bacteria in Neoproterozoic phosphorites , 2007, Nature.

[28]  P. Donoghue Palaeontology: Embryonic identity crisis , 2007, Nature.

[29]  Marco Stampanoni,et al.  Cellular and Subcellular Structure of Neoproterozoic Animal Embryos , 2006, Science.

[30]  R. Abela,et al.  Trends in synchrotron-based tomographic imaging: the SLS experience , 2006, SPIE Optics + Photonics.

[31]  S. Morris Darwin's dilemma: the realities of the Cambrian 'explosion' , 2006 .

[32]  E. Davidson,et al.  Phosphatized Polar Lobe-Forming Embryos from the Precambrian of Southwest China , 2006, Science.

[33]  M. Elbrächter Life cycle ofSchizochytriodinium calani nov. gen. nov. spec., a dinoflagellate parasitizing copepod eggs , 1988, Helgoländer Meeresuntersuchungen.

[34]  S. Conway Morris Darwin's dilemma: the realities of the Cambrian ‘explosion’ , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[35]  Junyuan Chen,et al.  Precambrian phosphatized embryos and larvae from the Doushantuo Formation and their affinities, Guizhou (SW China) , 2005 .

[36]  D. Lynn,et al.  Ophryoglena hemophaga n. sp. (Ciliophora: Ophryoglenidae): a parasite of the digestive gland of zebra mussels Dreissena polymorpha. , 2005, Diseases of aquatic organisms.

[37]  Philip C. J. Donoghue,et al.  Evolving form and function: fossils and development , 2005 .

[38]  E. Davidson,et al.  Response to Comment on "Small Bilaterian Fossils from 40 to 55 Million Years Before the Cambrian" , 2004, Science.

[39]  S. Bengtson,et al.  Comment on "Small Bilaterian Fossils from 40 to 55 Million Years Before the Cambrian" , 2004, Science.

[40]  E. Davidson,et al.  Small Bilaterian Fossils from 40 to 55 Million Years Before the Cambrian , 2004, Science.

[41]  C. Stern Gastrulation : from cells to embryo , 2004 .

[42]  S. Bengtson,et al.  Silicified and phosphatized Tianzhushania, spheroidal microfossils of possible animal origin from the Neoproterozoic of South China , 2004 .

[43]  L. Mendoza,et al.  In vitro studies on the mechanisms of endospore release by Rhinosporidium seeberi , 2004, Mycopathologia.

[44]  Simon Conway-Morris,et al.  The Cambrian "explosion" of metazoans and molecular biology: would Darwin be satisfied? , 2003, The International journal of developmental biology.

[45]  R. Raff,et al.  Who came first--larvae or adults? origins of bilaterian metazoan larvae. , 2003, The International journal of developmental biology.

[46]  J. Burkholder,et al.  REPRODUCTION AND SEXUALITY IN PFIESTERIA SHUMWAYAE (DINOPHYCEAE) 1 , 2003 .

[47]  M. Pekkarinen,et al.  Occurrence and life cycles of Dermocystidium species (Mesomycetozoa) in the perch (Perca fluviatilis) and ruff (Gymnocephalus cernuus) (Pisces: Perciformes) in Finland and Estonia , 2003 .

[48]  Chi Hui EARLY DEVELOPMENTAL EGGS WITH PERIVITELLINE SPACE FROM PRECAMBRIAN WENG'AN FAUNA, WENG'AN, CENTRAL GUIZHOU (SOUTH CHINA) , 2003 .

[49]  Marco Stampanoni,et al.  High resolution X-ray detector for synchrotron-based microtomography , 2002 .

[50]  E. Davidson,et al.  Precambrian animal life: probable developmental and adult cnidarian forms from Southwest China. , 2002, Developmental biology.

[51]  S. Xiao Mitotic topologies and mechanics of Neoproterozoic algae and animal embryos , 2002, Paleobiology.

[52]  L. Mendoza,et al.  The class mesomycetozoea: a heterogeneous group of microorganisms at the animal-fungal boundary. , 2002, Annual review of microbiology.

[53]  Yue Zhao,et al.  Discovery of phosphatized gastrula fossils from the Doushantuo Formation, Weng’an, Guizhou Province, China , 2001 .

[54]  H. Endoh,et al.  Binary Fission and Encystation of Opalina sp. in Axenic Medium , 2001 .

[55]  G. Vasta,et al.  Fine Structure of Clonally Propagated In Vitro Life Stages of a Perkinsus sp. Isolated from the Baltic Clam Macoma balthica , 2001, The Journal of eukaryotic microbiology.

[56]  A. Knoll,et al.  Eumetazoan fossils in terminal proterozoic phosphorites? , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[57]  A. Knoll,et al.  PHOSPHATIZED ANIMAL EMBRYOS FROM THE NEOPROTEROZOIC DOUSHANTUO FORMATION AT WENG'AN, GUIZHOU, SOUTH CHINA , 2000 .

[58]  P. Álvarez-Pellitero,et al.  The morphology of Ichthyophonus sp. in their mugilid hosts (Pisces: Teleostei) and following cultivation in vitro. A light and electron microscopy study , 1999, Parasitology Research.

[59]  A. Knoll,et al.  Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite , 1998, Nature.

[60]  S. Bengtson Animal embryos in deep time , 1998, Nature.

[61]  J. Bonner The origins of multicellularity , 1998 .

[62]  《中华放射肿瘤学杂志》编辑部 Medline , 2001, Current Biology.

[63]  D. Kirk,et al.  The genetic program for germ-soma differentiation in Volvox. , 1997, Annual review of genetics.

[64]  F. Perkins The Structure Of Perkinsus Marinus (Mackin, Owen And Collier, 1950) Levine, 1978 With Comments On Taxonomy And Phylogeny Of Perkinsus Spp. , 1996 .

[65]  D. Menzel Cell differentiation and the cytoskeleton in Acetabularia. , 1994, The New phytologist.

[66]  H. Mehlhorn,et al.  Developmental processes in parasitic protozoa. , 1987, International journal for parasitology.

[67]  S. Raghu-kumar Occurrence of the Thraustochytrid, Corallochytrium limacisporum gen. et sp. nov. in the Coral Reef Lagoons of the Lakshadweep Islands in the Arabian Sea , 1987 .

[68]  D. Kirk,et al.  Mechanism of formation, ultrastructure, and function of the cytoplasmic bridge system during morphogenesis in Volvox , 1981, The Journal of cell biology.

[69]  D. Kirk,et al.  Cleavage patterns, cell lineages, and development of a cytoplasmic bridge system in Volvox embryos , 1981, The Journal of cell biology.