Projector-based Control of Orbit Dynamics in Quantum Lindblad Systems

In this paper, we demonstrate that the dynamics of an n-dimensional Lindblad control system can be separated into its interand intra-orbit dynamics when there is fast controllability. This can be viewed as a control system on the simplex of density operator spectra, where projectors representing the eigenspaces are viewed as control variables. The local controllability properties of this control system can be analyzed when the control-set of projectors is limited to a finite subset. In particular, there is a natural finite subset of n! projector-tuples that are effective for low-purity orbits.

[1]  Claudio Altafini,et al.  Modeling and Control of Quantum Systems: An Introduction , 2012, IEEE Transactions on Automatic Control.

[2]  Ian R. Petersen,et al.  Quantum control theory and applications: A survey , 2009, IET Control Theory & Applications.

[3]  Lorenza Viola,et al.  Engineering quantum dynamics , 2001 .

[4]  David J. Tannor,et al.  On the interplay of control fields and spontaneous emission in laser cooling , 1999 .

[5]  E. Sudarshan,et al.  Completely Positive Dynamical Semigroups of N Level Systems , 1976 .

[6]  H. Rabitz,et al.  Control of quantum phenomena: past, present and future , 2009, 0912.5121.

[7]  Anthony M. Bloch,et al.  Flag-based control of quantum purity for n=2 systems , 2016, 1602.01918.

[8]  Anthony Bloch,et al.  Decoherence Control and Purification of Two-dimensional Quantum Density Matrices under Lindblad Dissipation , 2012, 1201.0399.

[9]  Navin Khaneja,et al.  Sub-Riemannian geometry and time optimal control of three spin systems: Quantum gates and coherence transfer , 2002 .

[10]  Eduardo D. Sontag,et al.  Mathematical Control Theory Second Edition , 1998 .

[11]  Stuart A. Rice,et al.  Control of selectivity of chemical reaction via control of wave packet evolution , 1985 .

[12]  T. Tarn,et al.  On the controllability of quantum‐mechanical systems , 1983 .

[13]  S. Schirmer,et al.  Orbits of quantum states and geometry of Bloch vectors for N-level systems , 2003, quant-ph/0308004.

[14]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[15]  Hideo Mabuchi,et al.  Principles and applications of control in quantum systems , 2005 .

[16]  Debbie W. Leung,et al.  Universal simulation of Markovian quantum dynamics , 2001 .

[17]  R. Feynman Simulating physics with computers , 1999 .

[18]  David J. Tannor,et al.  Optimal control of quantum dissipative dynamics: Analytic solution for cooling the three-level Λ system , 2004 .

[19]  K. Życzkowski,et al.  Geometry of Quantum States , 2007 .

[20]  Claudio Altafini,et al.  Controllability and simultaneous controllability of isospectral bilinear control systems on complex flag manifolds , 2009, Syst. Control. Lett..

[21]  T. Monz,et al.  An open-system quantum simulator with trapped ions , 2011, Nature.

[22]  Ronnie Kosloff,et al.  Quantum computing by an optimal control algorithm for unitary transformations. , 2002, Physical review letters.

[23]  C. Rangan,et al.  Optimally shaped terahertz pulses for phase retrieval in a Rydberg-atom data register , 2001, quant-ph/0103171.

[24]  G. Bodenhausen,et al.  Principles of nuclear magnetic resonance in one and two dimensions , 1987 .

[25]  Uwe Helmke,et al.  Lie-semigroup structures for reachability and control of open quantum systems: kossakowski-lindblad generators form lie wedge to markovian channels , 2009 .

[26]  C. Altafini,et al.  QUANTUM MECHANICS (GENERAL AND NONRELATIVISTIC) 2357 Controllability properties for finite dimensional quantum Markovian master equations , 2002, quant-ph/0211194.

[27]  Roger W. Brockett,et al.  Finite Controllability of Infinite-Dimensional Quantum Systems , 2010, IEEE Transactions on Automatic Control.

[28]  A. Zecca,et al.  On the generator of completely positive dynamical semigroups of N-level systems , 1977 .

[29]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[30]  Claudio Altafini,et al.  Coherent control of open quantum dynamical systems , 2004 .

[31]  Paul Brumer,et al.  Laser control of product quantum state populations in unimolecular reactions , 1986 .

[32]  D. D’Alessandro Introduction to Quantum Control and Dynamics , 2007 .

[33]  Sophie Shermer Stabilizing open quantum systems by Markovian reservoir engineering , 2010 .

[34]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[35]  D. Sugny,et al.  Laser control for the optimal evolution of pure quantum states (15 pages) , 2005 .

[36]  Tosio Kato Perturbation theory for linear operators , 1966 .

[37]  A. Horn Doubly Stochastic Matrices and the Diagonal of a Rotation Matrix , 1954 .