A coarse-grain force field for RDX: Density dependent and energy conserving.

We describe the development of a density-dependent transferable coarse-grain model of crystalline hexahydro-1,3,5-trinitro-s-triazine (RDX) that can be used with the energy conserving dissipative particle dynamics method. The model is an extension of a recently reported one-site model of RDX that was developed by using a force-matching method. The density-dependent forces in that original model are provided through an interpolation scheme that poorly conserves energy. The development of the new model presented in this work first involved a multi-objective procedure to improve the structural and thermodynamic properties of the previous model, followed by the inclusion of the density dependency via a conservative form of the force field that conserves energy. The new model accurately predicts the density, structure, pressure-volume isotherm, bulk modulus, and elastic constants of the RDX crystal at ambient pressure and exhibits transferability to a liquid phase at melt conditions.

[1]  M. Lísal,et al.  Free-energy calculations using classical molecular simulation: application to the determination of the melting point and chemical potential of a flexible RDX model. , 2016, Physical chemistry chemical physics : PCCP.

[2]  N. Aluru,et al.  Relative Entropy and Optimization-Driven Coarse-Graining Methods in VOTCA , 2015, PloS one.

[3]  Gerhard Gompper,et al.  Smoothed dissipative particle dynamics with angular momentum conservation , 2015, J. Comput. Phys..

[4]  Decarlos Taylor Pressure dependent elastic constants of alpha and gamma cyclotrimethylene trinitramine: A quantum mechanical study , 2014 .

[5]  James P. Larentzos,et al.  Coarse-Grain Model Simulations of Nonequilibrium Dynamics in Heterogeneous Materials. , 2014, The journal of physical chemistry letters.

[6]  Sergei Izvekov,et al.  Multi-scale coarse-graining of non-conservative interactions in molecular liquids. , 2014, The Journal of chemical physics.

[7]  G. Stoltz,et al.  Local density dependent potential for compressible mesoparticles. , 2013, The Journal of chemical physics.

[8]  P. B. Warren No-go theorem in many-body dissipative particle dynamics. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Sergei Izvekov,et al.  Microscopic derivation of particle-based coarse-grained dynamics. , 2013, The Journal of chemical physics.

[10]  Aziz Ghoufi,et al.  Recent advances in Many Body Dissipative Particles Dynamics simulations of liquid-vapor interfaces , 2013, The European physical journal. E, Soft matter.

[11]  Kurt Kremer,et al.  Structure-based coarse-graining in liquid slabs. , 2012, The Journal of chemical physics.

[12]  Martin Lísal,et al.  Dissipative particle dynamics at isothermal, isobaric, isoenergetic, and isoenthalpic conditions using Shardlow-like splitting algorithms. , 2011, The Journal of chemical physics.

[13]  B. Rice,et al.  Particle-based multiscale coarse graining with density-dependent potentials: application to molecular crystals (hexahydro-1,3,5-trinitro-s-triazine). , 2011, The Journal of chemical physics.

[14]  Gregory A Voth,et al.  The multiscale coarse-graining method. VII. Free energy decomposition of coarse-grained effective potentials. , 2011, The Journal of chemical physics.

[15]  S. Solares,et al.  Simulations of high-pressure phases in RDX. , 2011, The journal of physical chemistry. B.

[16]  Katie A. Maerzke,et al.  Transferable potentials for phase equilibria-coarse-grain description for linear alkanes. , 2011, The journal of physical chemistry. B.

[17]  Sergei Izvekov,et al.  Towards an understanding of many-particle effects in hydrophobic association in methane solutions. , 2011, The Journal of chemical physics.

[18]  M. Cawkwell,et al.  Anomalous hardening under shock compression in (021)-oriented cyclotrimethylene trinitramine single crystals , 2010 .

[19]  Sergei Izvekov,et al.  The multiscale coarse-graining method: assessing its accuracy and introducing density dependent coarse-grain potentials. , 2010, The Journal of chemical physics.

[20]  M. Cawkwell,et al.  Homogeneous dislocation nucleation in cyclotrimethylene trinitramine under shock loading , 2010 .

[21]  George Em Karniadakis,et al.  Direct construction of mesoscopic models from microscopic simulations. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Gregory A Voth,et al.  Efficient, Regularized, and Scalable Algorithms for Multiscale Coarse-Graining. , 2010, Journal of chemical theory and computation.

[23]  E. Vanden-Eijnden,et al.  Mori-Zwanzig formalism as a practical computational tool. , 2010, Faraday discussions.

[24]  Kurt Kremer,et al.  Hierarchical modeling of polymer permeation , 2009 .

[25]  Dmitry Bedrov,et al.  Shock-induced transformations in crystalline RDX: a uniaxial constant-stress Hugoniostat molecular dynamics simulation study. , 2009, The Journal of chemical physics.

[26]  Crystal structure prediction for cyclotrimethylene trinitramine (RDX) from first principles. , 2009, Physical chemistry chemical physics : PCCP.

[27]  M. Cawkwell,et al.  Shock-induced shear bands in an energetic molecular crystal: Application of shock-front absorbing boundary conditions to molecular dynamics simulations , 2008 .

[28]  Gregory A. Voth,et al.  The multiscale coarse-graining method. I. A rigorous bridge between atomistic and coarse-grained models. , 2008, The Journal of chemical physics.

[29]  Gregory A Voth,et al.  The multiscale coarse-graining method. II. Numerical implementation for coarse-grained molecular models. , 2008, The Journal of chemical physics.

[30]  Matej Praprotnik,et al.  Transport properties controlled by a thermostat: An extended dissipative particle dynamics thermostat. , 2007, Soft matter.

[31]  I. Pagonabarraga,et al.  Density dependent potentials: structure and thermodynamics. , 2007, The Journal of chemical physics.

[32]  Shi-aki Hyodo,et al.  Equation of motion for coarse-grained simulation based on microscopic description. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Jhih-Wei Chu,et al.  Emerging methods for multiscale simulation of biomolecular systems , 2007 .

[34]  D. Thompson,et al.  Molecular dynamics simulations of melting of perfect crystalline hexahydro-1,3,5-trinitro-1,3,5-s-triazine. , 2006, The Journal of chemical physics.

[35]  A. Jakobsen Erratum: “Constant-pressure and constant-surface tension simulations in dissipative particle dynamics” [J. Chem. Phys. 122, 124901 (2005)] , 2006 .

[36]  C. Eckhardt,et al.  The elastic constants and related properties of the energetic material cyclotrimethylene trinitramine (RDX) determined by Brillouin scattering. , 2006, The Journal of chemical physics.

[37]  Gregory A Voth,et al.  Multiscale coarse graining of liquid-state systems. , 2005, The Journal of chemical physics.

[38]  Valentina Tozzini,et al.  Coarse-grained models for proteins. , 2005, Current opinion in structural biology.

[39]  Gregory A Voth,et al.  A multiscale coarse-graining method for biomolecular systems. , 2005, The journal of physical chemistry. B.

[40]  Carlos F. Lopez,et al.  TOPICAL REVIEW: Coarse grain models and the computer simulation of soft materials , 2004 .

[41]  P. B. Warren Vapor-liquid coexistence in many-body dissipative particle dynamics. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  Pep Español,et al.  Smoothed dissipative particle dynamics. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  Maj Thijs Michels,et al.  Thermodynamic consistency in dissipative particle dynamics simulations of strongly nonideal liquids and liquid mixtures , 2002 .

[44]  Florian Müller-Plathe,et al.  Coarse-graining in polymer simulation: from the atomistic to the mesoscopic scale and back. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[45]  A. Louis Beware of density dependent pair potentials , 2002, cond-mat/0205110.

[46]  S. Haussühl Elastic and thermoelastic properties of selected organic crystals: acenaphthene, trans-azobenzene, benzophenone, tolane, trans-stilbene, dibenzyl, diphenyl sulfone, 2,2´-biphenol, urea, melamine, hexogen, succinimide, pentaerythritol, urotropine, malonic acid, dimethyl malonic acid, maleic acid, hip , 2001 .

[47]  I. Pagonabarraga,et al.  Dissipative particle dynamics for interacting systems , 2001, cond-mat/0105075.

[48]  R. Menikoff,et al.  Molecular dynamics simulations of HMX crystal polymorphs using a flexible molecule force field , 2001 .

[49]  Grant D. Smith,et al.  Quantum chemistry based force field for simulations of HMX , 1999 .

[50]  D. Bedrov,et al.  Quantum-Chemistry-Based Force Field for Simulations of Dimethylnitramine , 1999 .

[51]  Ignacio Pagonabarraga,et al.  Self-consistent dissipative particle dynamics algorithm , 1998 .

[52]  D. Pettifor,et al.  Atomistic simulation of titanium. I. A bond-order potential , 1998 .

[53]  P. B. Warren,et al.  DISSIPATIVE PARTICLE DYNAMICS : BRIDGING THE GAP BETWEEN ATOMISTIC AND MESOSCOPIC SIMULATION , 1997 .

[54]  J. Ávalos,et al.  Dissipative particle dynamics with energy conservation , 1997, cond-mat/9706217.

[55]  P. Español Dissipative particle dynamics with energy conservation , 1997, cond-mat/9706213.

[56]  A. Lyubartsev,et al.  Calculation of effective interaction potentials from radial distribution functions: A reverse Monte Carlo approach. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[57]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[58]  J. Koelman,et al.  Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics , 1992 .

[59]  W. Schommers A pair potential for liquid rubidium from the pair correlation function , 1973 .

[60]  R. A. Johnson,et al.  Relationship between two-body interatomic potentials in a lattice model and elastic constants. II , 1972 .

[61]  E. Prince,et al.  The crystal structure of cyclotrimethylenetrinitramine , 1972 .

[62]  H. Cady Coefficient of thermal expansion of pentaerythritol tetranitrate and hexahydro-1,3,5-trinitro-s-triazine (RDX) , 1972 .

[63]  P. G. Hall Thermal decomposition and phase transitions in solid nitramines , 1971 .