Synthesis of Fe3O4 magnetic fluid used for magnetic resonance imaging and hyperthermia

Fe3O4 magnetic nanoparticles were prepared by co-precipitation from FeSO4 center dot 7H(2)O and FeCl3 center dot 6H(2)O aqueous solutions using NaOH as precipitating reagent. The nanoparticles have an average size of 12 nm and exhibit superparamagnetism at room temperature. The nanoparticles were used to prepare a water-based magnetic fluid using oleic acid and Tween 80 as surfactants. The stability and magnetic properties of the magnetic fluid were characterized by Gouy magnetic balance. The experimental results imply that the hydrophilic block of Tween 80 can make the Fe3O4 nanoparticles suspending in water stable even after dilution and autoclaving. The magnetic fluid demonstrates excellent stability and fast magneto-temperature response, which can be used both in magnetic resonance imaging and magnetic fluid hyperthermia. (C) 2011 Elsevier B.V. All rights reserved.

[1]  Stefan Odenbach,et al.  Magnetoviscous effects in ferrofluids , 2002 .

[2]  Chia-Fen Lee,et al.  Preparation and properties of poly(acrylic acid) oligomer stabilized superparamagnetic ferrofluid. , 2005, Journal of colloid and interface science.

[3]  V. Rangari,et al.  Synthesis and characterization of noscapine loaded magnetic polymeric nanoparticles. , 2010, Journal of magnetism and magnetic materials.

[4]  Y. Xuan,et al.  Heat transfer enhancement of nanofluids , 2000 .

[5]  J. Shimoiizaka,et al.  Sink-float separators using permanent magnets and water based magnetic fluid , 1980 .

[6]  A. V. Sergeev,et al.  Evaluation of ferromagnetic fluids and suspensions for the site-specific radiofrequency-induced hyperthermia of MX11 sarcoma cells in vitro , 2001 .

[7]  R. K. Pandey,et al.  Dependence of pH and surfactant effect in the synthesis of magnetite (Fe3O4) nanoparticles and its properties , 2010 .

[8]  Ingrid Hilger,et al.  Thermal Ablation of Tumors Using Magnetic Nanoparticles: An In Vivo Feasibility Study , 2002, Investigative radiology.

[9]  R. Hong,et al.  Rheological properties of water-based Fe3O4 ferrofluids , 2007 .

[10]  S. Kasaoka,et al.  Tumor regression by inductive hyperthermia combined with hepatic embolization using dextran magnetite-incorporated microspheres in rats. , 2000, International journal of oncology.

[11]  Ralph Weissleder,et al.  Long-circulating iron oxides for MR imaging , 1995 .

[12]  L. Vékás,et al.  Concentration and composition dependence of rheological and magnetorheological properties of some magnetic fluids , 2001 .

[13]  R. Hong,et al.  Synthesis of Fe3O4 nanoparticles without inert gas protection used as precursors of magnetic fluids , 2008 .

[14]  Gil Markovich,et al.  Ordered Two‐Dimensional Arrays of Ferrite Nanoparticles , 2001 .

[15]  Yongxiao Bai,et al.  Preparation and application of polymer-grafted magnetic nanoparticles for lipase immobilization , 2008 .

[16]  P. Stroeve,et al.  Structure and Characterization of Nanocomposite Langmuir−Blodgett Films of Poly(maleic monoester)/Fe3O4 Nanoparticle Complexes , 2002 .

[17]  Ning Gu,et al.  Preparation and characterization of magnetite nanoparticles coated by amino silane , 2003 .

[18]  Yoshimi Watanabe,et al.  Preparation of magnetic poly(vinyl alcohol) (PVA) materials by in situ synthesis of magnetite in a PVA matrix , 2003 .

[19]  P. Wust,et al.  Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles , 1999 .

[20]  R. Hong,et al.  Microwave synthesis of magnetic Fe3O4 nanoparticles used as a precursor of nanocomposites and ferrofluids , 2006 .

[21]  R. Hong,et al.  Synthesis of Fe3O4/APTES/PEG diacid functionalized magnetic nanoparticles for MR imaging , 2008 .

[22]  R. Hong,et al.  Preparation and characterization of silica-coated Fe3O4 nanoparticles used as precursor of ferrofluids , 2009 .

[23]  P. Babinec,et al.  In vivo heating of magnetic nanoparticles in alternating magnetic field. , 2004, Medical physics.

[24]  R. Hong,et al.  Simple synthesis and magnetic properties of Fe3O4/BaSO4 multi-core/shell particles , 2009 .

[25]  M. Kilner,et al.  Studies of the double surfactant layer stabilization of water-based magnetic fluids , 1991 .

[26]  S. C. Pillai,et al.  Magnetic nanoparticles and nanoparticle assemblies from metallorganic precursors , 2001 .

[27]  F. Cocks,et al.  The equilibrium and non-equilibrium thermal behaviour of aqueous ternary solutions based on complex physiological support media, containing NaCl, and dimethyl sulphoxide or glycerol , 1977 .

[28]  R. Hong,et al.  Synthesis, characterization and MRI application of dextran-coated Fe3O4 magnetic nanoparticles , 2008 .

[29]  B. Büchner,et al.  Magnetic study of iron-containing carbon nanotubes: Feasibility for magnetic hyperthermia , 2009 .

[30]  S. Ribeiro,et al.  Electro-precipitation of Fe3O4 nanoparticles in ethanol , 2008 .

[31]  R. Perzynski,et al.  What tunes the structural anisotropy of magnetic fluids under a magnetic field? , 2006, The journal of physical chemistry. B.

[32]  Pieter Stroeve,et al.  Yield stress measurements of magnetorheological fluids in tubes , 2000 .

[33]  G. D. Rose,et al.  Rheology of high internal phase emulsions. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[34]  R. Waldron Infrared Spectra of Ferrites , 1955 .

[35]  E. Wang,et al.  Monodisperse mesoporous superparamagnetic single-crystal magnetite nanoparticles for drug delivery. , 2009, Biomaterials.