Automated Tracking of Drosophila Specimens

The fruit fly Drosophila Melanogaster has become a model organism in the study of neurobiology and behavior patterns. The analysis of the way the fly moves and its behavior is of great scientific interest for research on aspects such as drug tolerance, aggression or ageing in humans. In this article, a procedure for detecting, identifying and tracking numerous specimens of Drosophila by means of computer vision-based sensing systems is presented. This procedure allows dynamic information about each specimen to be collected at each moment, and then for its behavior to be quantitatively characterized. The proposed algorithm operates in three main steps: a pre-processing step, a detection and segmentation step, and tracking shape. The pre-processing and segmentation steps allow some limits of the image acquisition system and some visual artifacts (such as shadows and reflections) to be dealt with. The improvements introduced in the tracking step allow the problems corresponding to identity loss and swaps, caused by the interaction between individual flies, to be solved efficiently. Thus, a robust method that compares favorably to other existing methods is obtained.

[1]  Simon Tavaré,et al.  Simultaneous tracking of movement and gene expression in multiple Drosophila melanogaster flies using GFP and DsRED fluorescent reporter transgenes , 2009, BMC Research Notes.

[2]  E. Kravitz,et al.  Specific subgroups of FruM neurons control sexually dimorphic patterns of aggression in Drosophila melanogaster , 2007, Proceedings of the National Academy of Sciences.

[3]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[4]  Álvaro Solera-Ramírez Filtro de Kalman , 2003 .

[5]  S. Tavaré,et al.  Three-dimensional tracking and behaviour monitoring of multiple fruit flies , 2013, Journal of The Royal Society Interface.

[6]  Da-Wen Sun,et al.  Improving quality inspection of food products by computer vision: a review , 2004 .

[7]  Chandrika Kamath,et al.  Robust Background Subtraction with Foreground Validation for Urban Traffic Video , 2005, EURASIP J. Adv. Signal Process..

[8]  J. Warren Unencumbered Full Body Interaction in Video Games , 2003 .

[9]  Alex Zelinsky,et al.  Learning OpenCV---Computer Vision with the OpenCV Library (Bradski, G.R. et al.; 2008)[On the Shelf] , 2009, IEEE Robotics & Automation Magazine.

[10]  Stefano Messelodi,et al.  A Kalman Filter Based Background Updating Algorithm Robust to Sharp Illumination Changes , 2005, ICIAP.

[11]  M. Heisenberg,et al.  Octopamine in Male Aggression of Drosophila , 2008, Current Biology.

[12]  Oncel Tuzel,et al.  Bayesian background modeling for foreground detection , 2005, VSSN@MM.

[13]  Mark E Hallenbeck,et al.  Extracting Roadway Background Image , 2006 .

[14]  M. Sigari,et al.  Fuzzy Running Average and Fuzzy Background Subtraction: Concepts and Application , 2008 .

[15]  A. Pérez-Escudero,et al.  idTracker: tracking individuals in a group by automatic identification of unmarked animals , 2014, Nature Methods.

[16]  Peter S. Maybeck,et al.  Stochastic Models, Estimation And Control , 2012 .

[17]  Michael J. Black,et al.  EigenTracking: Robust Matching and Tracking of Articulated Objects Using a View-Based Representation , 1996, International Journal of Computer Vision.

[18]  Thierry Bouwmans,et al.  Fuzzy integral for moving object detection , 2008, 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence).

[19]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Greg Welch,et al.  An Introduction to Kalman Filter , 1995, SIGGRAPH 2001.

[21]  D. Guarnieri,et al.  Drosophila melanogaster, a genetic model system for alcohol research. , 2003, International review of neurobiology.

[22]  P. Mitra,et al.  Analysis of the Trajectory of Drosophila melanogaster in a Circular Open Field Arena , 2007, PloS one.

[23]  Rita Cucchiara,et al.  Detecting Moving Objects, Ghosts, and Shadows in Video Streams , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Larry S. Davis,et al.  W4: Real-Time Surveillance of People and Their Activities , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  P. Shaw,et al.  Drosophila aging 2006/2007 , 2008, Experimental Gerontology.

[26]  Cor J. Veenman,et al.  Resolving Motion Correspondence for Densely Moving Points , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Hans-Peter Seidel,et al.  Free-viewpoint video of human actors , 2003, ACM Trans. Graph..

[28]  Osama Masoud,et al.  Tracking all traffic: computer vision algorithms for monitoring vehicles, individuals, and crowds , 2005, IEEE Robotics & Automation Magazine.

[29]  Rama Chellappa,et al.  Estimation of Object Motion Parameters from Noisy Images , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Hans-Werner Gellersen,et al.  Toward Mobile Eye-Based Human-Computer Interaction , 2010, IEEE Pervasive Computing.

[31]  Larry S. Davis,et al.  Real-time 3D Motion Capture , 1998 .

[32]  U. Heberlein,et al.  Invertebrate models of drug abuse. , 2003, Journal of neurobiology.

[33]  Massimo Piccardi,et al.  Background subtraction techniques: a review , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[34]  David Suter,et al.  A Novel Robust Statistical Method for Background Initialization and Visual Surveillance , 2006, ACCV.

[35]  Pietro Perona,et al.  Automated monitoring and analysis of social behavior in Drosophila , 2009, Nature Methods.

[36]  Tucker R. Balch,et al.  The multi‐iterative closest point tracker: An online algorithm for tracking multiple interacting targets , 2012, J. Field Robotics.

[37]  Fatih Porikli,et al.  Human Body Tracking by Adaptive Background Models and Mean-Shift Analysis , 2003 .

[38]  Karen S Ho,et al.  Drosophila melanogaster: an insect model for fundamental studies of sleep. , 2005, Methods in enzymology.

[39]  J. L. Roux An Introduction to the Kalman Filter , 2003 .

[40]  Dorin Comaniciu,et al.  Mean shift analysis and applications , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[41]  B. Dickson,et al.  FlyMAD: rapid thermogenetic control of neuronal activity in freely walking Drosophila , 2014, Nature Methods.

[42]  Roseanna B. Ramazani,et al.  Computer automated movement detection for the analysis of behavior , 2007, Journal of Neuroscience Methods.

[43]  Jean-René Martin A portrait of locomotor behaviour in Drosophila determined by a video-tracking paradigm , 2004, Behavioural Processes.

[44]  Jack Sklansky,et al.  Finding circles by an array of accumulators , 1975, Commun. ACM.

[45]  M. Konsolaki,et al.  P2-109 Drosophila models of Alzheimer's-related pathways , 2004, Neurobiology of Aging.

[46]  Pietro Perona,et al.  High-throughput Ethomics in Large Groups of Drosophila , 2009, Nature Methods.

[47]  E. Z. Kim,et al.  High-Resolution Positional Tracking for Long-Term Analysis of Drosophila Sleep and Locomotion Using the “Tracker” Program , 2012, PloS one.

[48]  Giorgio F. Gilestro,et al.  Video tracking and analysis of sleep in Drosophila melanogaster , 2012, Nature Protocols.

[49]  P. Rousseeuw,et al.  Alternatives to the Median Absolute Deviation , 1993 .