Pointwise Rotation-Invariant Network with Adaptive Sampling and 3D Spherical Voxel Convolution

Point cloud analysis without pose priors is very challenging in real applications, as the orientations of point clouds are often unknown. In this paper, we propose a brand new point-set learning framework PRIN, namely, Pointwise Rotation-Invariant Network, focusing on rotation-invariant feature extraction in point clouds analysis. We construct spherical signals by Density Aware Adaptive Sampling to deal with distorted point distributions in spherical space. In addition, we propose Spherical Voxel Convolution and Point Re-sampling to extract rotation-invariant features for each point. Our network can be applied to tasks ranging from object classification, part segmentation, to 3D feature matching and label alignment. We show that, on the dataset with randomly rotated point clouds, PRIN demonstrates better performance than state-of-the-art methods without any data augmentation. We also provide theoretical analysis for the rotation-invariance achieved by our methods.

[1]  Baoquan Chen,et al.  PointCNN: Convolution On $\mathcal{X}$-Transformed Points , 2018 .

[2]  Yifan Xu,et al.  SpiderCNN: Deep Learning on Point Sets with Parameterized Convolutional Filters , 2018, ECCV.

[3]  Federico Tombari,et al.  Unique Signatures of Histograms for Local Surface Description , 2010, ECCV.

[4]  Subhransu Maji,et al.  SPLATNet: Sparse Lattice Networks for Point Cloud Processing , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[5]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[6]  Cewu Lu,et al.  PointSIFT: A SIFT-like Network Module for 3D Point Cloud Semantic Segmentation , 2018, ArXiv.

[7]  Alexander J. Smola,et al.  Deep Sets , 2017, 1703.06114.

[8]  Subhransu Maji,et al.  Multi-view Convolutional Neural Networks for 3D Shape Recognition , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[9]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[10]  Matthias Zwicker,et al.  Point2Sequence: Learning the Shape Representation of 3D Point Clouds with an Attention-based Sequence to Sequence Network , 2018, AAAI.

[11]  Sebastian Scherer,et al.  VoxNet: A 3D Convolutional Neural Network for real-time object recognition , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[12]  Leonidas J. Guibas,et al.  A scalable active framework for region annotation in 3D shape collections , 2016, ACM Trans. Graph..

[13]  Daniel Cohen-Or,et al.  P2P-NET , 2018, ACM Trans. Graph..

[14]  Maks Ovsjanikov,et al.  PCPNet Learning Local Shape Properties from Raw Point Clouds , 2017, Comput. Graph. Forum.

[15]  Federico Tombari,et al.  Unique shape context for 3d data description , 2010, 3DOR '10.

[16]  Jiaxin Li,et al.  SO-Net: Self-Organizing Network for Point Cloud Analysis , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[17]  Sander Dieleman,et al.  Rotation-invariant convolutional neural networks for galaxy morphology prediction , 2015, ArXiv.

[18]  Ersin Yumer,et al.  Convolutional neural networks on surfaces via seamless toric covers , 2017, ACM Trans. Graph..

[19]  Yaron Lipman,et al.  Point convolutional neural networks by extension operators , 2018, ACM Trans. Graph..

[20]  G. Chirikjian,et al.  Engineering Applications of Noncommutative Harmonic Analysis: With Emphasis on Rotation and Motion Groups , 2000 .

[21]  Pierre Vandergheynst,et al.  Geometric Deep Learning: Going beyond Euclidean data , 2016, IEEE Signal Process. Mag..

[22]  Jonathan Masci,et al.  Geometric Deep Learning on Graphs and Manifolds Using Mixture Model CNNs , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  L. Nachbin,et al.  The Haar integral , 1965 .

[24]  A. Makadia,et al.  Learning SO(3) Equivariant Representations with Spherical CNNs , 2019, International Journal of Computer Vision.

[25]  Leonidas J. Guibas,et al.  PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[26]  Leonidas J. Guibas,et al.  PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space , 2017, NIPS.

[27]  Leonidas J. Guibas,et al.  SyncSpecCNN: Synchronized Spectral CNN for 3D Shape Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[28]  Gérard G. Medioni,et al.  Structural Indexing: Efficient 3-D Object Recognition , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Ming Hao,et al.  Linked Dynamic Graph CNN: Learning on Point Cloud via Linking Hierarchical Features , 2019, ArXiv.

[30]  Max Welling,et al.  Steerable CNNs , 2016, ICLR.

[31]  Mohammed Bennamoun,et al.  3D Object Recognition in Cluttered Scenes with Local Surface Features: A Survey , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Danna Zhou,et al.  d. , 1934, Microbial pathogenesis.

[33]  Pedro M. Domingos,et al.  Deep Symmetry Networks , 2014, NIPS.

[34]  Ulrich Neumann,et al.  Recurrent Slice Networks for 3D Segmentation of Point Clouds , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[35]  Max Welling,et al.  Spherical CNNs , 2018, ICLR.

[36]  Jianxiong Xiao,et al.  3D ShapeNets: A deep representation for volumetric shapes , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[37]  Victor S. Lempitsky,et al.  Escape from Cells: Deep Kd-Networks for the Recognition of 3D Point Cloud Models , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[38]  D. Rockmore,et al.  FFTs on the Rotation Group , 2008 .

[39]  Vladlen Koltun,et al.  Learning Compact Geometric Features , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[40]  Yue Wang,et al.  Dynamic Graph CNN for Learning on Point Clouds , 2018, ACM Trans. Graph..

[41]  Nico Blodow,et al.  Fast Point Feature Histograms (FPFH) for 3D registration , 2009, 2009 IEEE International Conference on Robotics and Automation.

[42]  Nico Blodow,et al.  Aligning point cloud views using persistent feature histograms , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[43]  Federico Tombari,et al.  SHOT: Unique signatures of histograms for surface and texture description , 2014, Comput. Vis. Image Underst..