Mixed-Matrix Membranes containing an Azine-Linked Covalent Organic Framework_ Influence of the polymeric matrix on Post-Combustion CO2-capture

[1]  G. Zhu,et al.  Engineering microporous organic framework membranes for CO2 separations , 2017 .

[2]  J. Gascón,et al.  Mixed-Matrix Membranes. , 2017, Angewandte Chemie.

[3]  Zhongyi Jiang,et al.  Mixed matrix membranes comprising polymers of intrinsic microporosity and covalent organic framework for gas separation , 2017 .

[4]  Baotian Shan,et al.  TpPa-2-incorporated mixed matrix membranes for efficient water purification , 2017 .

[5]  K. M. Gupta,et al.  Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation , 2017, Nature Communications.

[6]  F. Kapteijn,et al.  Azine-Linked Covalent Organic Framework (COF)-Based Mixed-Matrix Membranes for CO2 /CH4 Separation. , 2016, Chemistry.

[7]  F. Kapteijn,et al.  Influence of ZIF-8 particle size in the performance of polybenzimidazole mixed matrix membranes for pre-combustion CO2 capture and its validation through interlaboratory test , 2016 .

[8]  C. Téllez,et al.  On the chemical filler–polymer interaction of nano- and micro-sized ZIF-11 in PBI mixed matrix membranes and their application for H2/CO2 separation , 2016 .

[9]  J. Long,et al.  Plasticization-resistant Ni2(dobdc)/polyimide composite membranes for the removal of CO2 from natural gas , 2016 .

[10]  Jixiao Wang,et al.  Enhanced performance of mixed matrix membrane by incorporating a highly compatible covalent organic framework into poly(vinylamine) for hydrogen purification , 2016 .

[11]  F. Kapteijn,et al.  Metal Organic Framework Crystals in Mixed‐Matrix Membranes: Impact of the Filler Morphology on the Gas Separation Performance , 2016, Advanced functional materials.

[12]  R. Banerjee,et al.  Chemically Stable Covalent Organic Framework (COF)-Polybenzimidazole Hybrid Membranes: Enhanced Gas Separation through Pore Modulation. , 2016, Chemistry.

[13]  Mira Park,et al.  Effects of Microporosity and Surface Chemistry on Separation Performances of N-Containing Pitch-Based Activated Carbons for CO2/N2 Binary Mixture , 2016, Scientific Reports.

[14]  Dan Zhao,et al.  Mixed Matrix Membranes (MMMs) Comprising Exfoliated 2D Covalent Organic Frameworks (COFs) for Efficient CO2 Separation , 2016 .

[15]  C. Ochsenfeld,et al.  Tunable Water and CO2 Sorption Properties in Isostructural Azine-Based Covalent Organic Frameworks through Polarity Engineering , 2015 .

[16]  M. W. Anjum,et al.  Modulated UiO-66-Based Mixed-Matrix Membranes for CO2 Separation. , 2015, ACS applied materials & interfaces.

[17]  Pezhman Arab,et al.  Synthesis and evaluation of porous azo-linked polymers for carbon dioxide capture and separation , 2015 .

[18]  S. Kaliaguine,et al.  Polymer functionalization to enhance interface quality of mixed matrix membranes for high CO2/CH4 gas separation , 2015 .

[19]  Dc Kitty Nijmeijer,et al.  Performance and plasticization behavior of polymer–MOF membranes for gas separation at elevated pressures , 2014 .

[20]  Hong Xia,et al.  A 2D azine-linked covalent organic framework for gas storage applications. , 2014, Chemical communications.

[21]  S. Japip,et al.  Highly permeable zeolitic imidazolate framework (ZIF)-71 nano-particles enhanced polyimide membranes for gas separation , 2014 .

[22]  Krista S. Walton,et al.  Water stability and adsorption in metal-organic frameworks. , 2014, Chemical reviews.

[23]  J. Ferraris,et al.  MIL-53 frameworks in mixed-matrix membranes , 2014 .

[24]  May‐Britt Hägg,et al.  Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture , 2014 .

[25]  Seda Keskin,et al.  Molecular modeling of MOF and ZIF-filled MMMs for CO2/N2 separations , 2014 .

[26]  J. Long,et al.  CO2/N2 separations with mixed-matrix membranes containing Mg2(dobdc) nanocrystals† , 2013 .

[27]  W. Goedel,et al.  Bicontinuous zeolite polymer composite membranes prepared via float casting. , 2013, Journal of the American Chemical Society.

[28]  T. E. Reich,et al.  A 2D mesoporous imine-linked covalent organic framework for high pressure gas storage applications. , 2013, Chemistry.

[29]  S. Fukuzumi,et al.  Charge dynamics in a donor-acceptor covalent organic framework with periodically ordered bicontinuous heterojunctions. , 2013, Angewandte Chemie.

[30]  Hua Jin,et al.  Metal-organic framework ZIF-8 nanocomposite membrane for efficient recovery of furfural via pervaporation and vapor permeation , 2013 .

[31]  Hasmukh A. Patel,et al.  Unprecedented high-temperature CO2 selectivity in N2-phobic nanoporous covalent organic polymers , 2013, Nature Communications.

[32]  Tao Li,et al.  Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers , 2013 .

[33]  Ryan P. Lively,et al.  A high-flux polyimide hollow fiber membrane to minimize footprint and energy penalty for CO2 recovery from flue gas , 2012 .

[34]  Jose L. Mendoza-Cortes,et al.  A Covalent Organic Framework that Exceeds the DOE 2015 Volumetric Target for H2 Uptake at 298 K. , 2012, The journal of physical chemistry letters.

[35]  I. Vankelecom,et al.  SPEEK and functionalized mesoporous MCM-41 mixed matrix membranes for CO2 separations , 2012 .

[36]  W. Wang,et al.  Covalent organic frameworks. , 2012, Chemical Society reviews.

[37]  Zifeng Yan,et al.  Influence of chemical functionalization on the CO₂/N₂ separation performance of porous graphene membranes. , 2012, Nanoscale.

[38]  M. A. Alam,et al.  Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation , 2012 .

[39]  Freek Kapteijn,et al.  Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of CO2 from CH4 at elevated pressures. , 2011, Chemical communications.

[40]  Christopher W. Jones,et al.  A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals. , 2010, Angewandte Chemie.

[41]  D. Sholl,et al.  Selecting metal organic frameworks as enabling materials in mixed matrix membranes for high efficiency natural gas purification , 2010 .

[42]  A. Villa,et al.  Covalent triazine framework as catalytic support for liquid phase reaction. , 2010, Nano letters.

[43]  J. Ferraris,et al.  Mixed-matrix membranes containing MOF-5 for gas separations , 2009 .

[44]  A. Car,et al.  Tailor‐made Polymeric Membranes based on Segmented Block Copolymers for CO2 Separation , 2008 .

[45]  L. Robeson,et al.  The upper bound revisited , 2008 .

[46]  J. Ferraris,et al.  Gas permeability properties of Matrimid® membranes containing the metal-organic framework Cu–BPY–HFS , 2008 .

[47]  Sindee L. Simon,et al.  The glass transition temperature versus the fictive temperature , 2007 .

[48]  Yi Li,et al.  MIXED MATRIX MEMBRANES (MMMS) COMPRISING ORGANIC POLYMERS WITH DISPERSED INORGANIC FILLERS FOR GAS SEPARATION , 2007 .

[49]  S. Kulprathipanja,et al.  The effects of polymer chain rigidification, zeolite pore size and pore blockage on polyethersulfone (PES)-zeolite A mixed matrix membranes , 2005 .

[50]  K. Nagai,et al.  Analysis of dual-mode model parameters for gas sorption in glassy polymers , 2005 .

[51]  Tai‐Shung Chung,et al.  Characterization of permeability and sorption in Matrimid/C60 mixed matrix membranes , 2003 .

[52]  Matthias Wessling,et al.  CO2-induced plasticization phenomena in glassy polymers , 1999 .

[53]  斎藤 拓 高分子ガラスの physical aging , 1996 .

[54]  L. Robeson,et al.  Correlation of separation factor versus permeability for polymeric membranes , 1991 .

[55]  V. Stannett The transport of gases in synthetic polymeric membranes — an historic perspective , 1978 .