High Wall-Plug Efficiency AlGaN Deep Ultraviolet Micro-LEDs Enabled by an Etched Reflective Array Design for High Data Transmission

AlGaN deep ultraviolet light-emitting diodes (DUV LEDs) have potential applications in free-space communication, but their current limited efficiency restricts the further development of free-space ultraviolet communication (FSUC) applications. In this work, an etched reflective array (ERA) strategy has been proposed in DUV micro-LEDs with various pixel sizes of 20, 30, and <inline-formula> <tex-math notation="LaTeX">$60~\mu \text{m}$ </tex-math></inline-formula>, to enhance the efficiency via etching the p-GaN layer to reduce light absorption and fabricating full-spatial omnidirectional reflector (FSODR) to increase light extraction. The 20-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> DUV micro-LEDs with ERA strategy exhibit a light output power (LOP) of 39.9 mW at 160 mA and a record high wall-plug efficiency (WPE) of 8.3% at 5 mA. Critically, both the transverse-magnetic (TM) and transverse-electric (TE) mode light intensity are significantly enhanced by 52.59% and 46.29%, respectively, compared with the device without ERA strategy. Furthermore, simulation results show that the light extraction efficiency (LEE) of TM- and TE-polarized light for the 20-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> DUV micro-LEDs with ERA strategy are enhanced by 48.66% and 46.05%, respectively. In addition, this device achieves a high data transmission rate of 3.819 Gbps in FSUC.

[1]  Muhammad Hunain Memon,et al.  In-Depth Investigation of Deep Ultraviolet MicroLED Geometry for Enhanced Performance , 2023, IEEE Electron Device Letters.

[2]  W. Ge,et al.  Group-III nitride heteroepitaxial films approaching bulk-class quality , 2023, Nature Materials.

[3]  Junxi Wang,et al.  Plasmon-enhanced deep ultraviolet Micro-LED arrays for solar-blind communications. , 2023, Optics letters.

[4]  Kecheng Zhang,et al.  Enhancing the optical and electrical properties of AlGaN ultraviolet-C micro-LED via a hybrid scheme of plasma and chemical treatment , 2022, Applied Physics Letters.

[5]  M. Dawson,et al.  Hundred-meter Gb/s deep ultraviolet wireless communications using AlGaN micro-LEDs. , 2022, Optics express.

[6]  N. Chi,et al.  Size-Dependent UV-C Communication Performance of AlGaN Micro-LEDs and LEDs , 2022, Journal of Lightwave Technology.

[7]  Muhammad Hunain Memon,et al.  A 10 × 10 deep ultraviolet light-emitting micro-LED array , 2022, Journal of Semiconductors.

[8]  S. Denbaars,et al.  Size dependent characteristics of AlGaN-based deep ultraviolet micro-light-emitting-diodes , 2022, Applied Physics Express.

[9]  W. Ge,et al.  Deep‐Ultraviolet Micro‐LEDs Exhibiting High Output Power and High Modulation Bandwidth Simultaneously , 2022, Advanced materials.

[10]  Jiankun Yang,et al.  275 nm Deep Ultraviolet AlGaN-Based Micro-LED Arrays for Ultraviolet Communication , 2022, IEEE Photonics Journal.

[11]  P. Tian,et al.  Analysis of the efficiency improvement of 273 nm AlGaN UV-C micro-LEDs , 2022, Journal of Physics D: Applied Physics.

[12]  H. Kwok,et al.  AlGaN-Based Deep-UV Micro-LED Array for Quantum Dots Converted Display With Ultra-Wide Color Gamut , 2022, IEEE Electron Device Letters.

[13]  M. S. Islim,et al.  10Gbps Wavelength Division Multiplexing Using UV-A, UV-B and UV-C Micro-LEDs , 2021, Photonics Research.

[14]  P. Tian,et al.  Beyond 25 Gbps optical wireless communication using wavelength division multiplexed LEDs and micro-LEDs. , 2021, Optics letters.

[15]  G. Simin,et al.  Enhanced light extraction efficiency of micropixel geometry AlGaN DUV light-emitting diodes , 2021, Applied Physics Express.

[16]  Muhammad Hunain Memon,et al.  AlGaN-based deep ultraviolet micro-LED emitting at 275 nm. , 2021, Optics letters.

[17]  Renli Liang,et al.  Enhanced light extraction efficiency via double nano-pattern arrays for high-efficiency deep UV LEDs , 2021 .

[18]  P. Tian,et al.  2  Gbps free-space ultraviolet-C communication based on a high-bandwidth micro-LED achieved with pre-equalization. , 2021, Optics letters.

[19]  G. Simin,et al.  An opto-thermal study of high brightness 280 nm emission AlGaN micropixel light-emitting diode arrays , 2020, Applied Physics Express.

[20]  Ryan T. Ley,et al.  Revealing the importance of light extraction efficiency in InGaN/GaN microLEDs via chemical treatment and dielectric passivation , 2020 .

[21]  Fangchen Hu,et al.  2.4-Gbps Ultraviolet-C Solar-Blind Communication Based on Probabilistically Shaped DMT Modulation , 2020, 2020 Optical Fiber Communications Conference and Exhibition (OFC).

[22]  Yuan Liu,et al.  Optical polarization characteristics and light extraction behavior of deep-ultraviolet LED flip-chip with full-spatial omnidirectional reflector system. , 2019, Optics express.

[23]  Harald Haas,et al.  1  Gbps free-space deep-ultraviolet communications based on III-nitride micro-LEDs emitting at 262  nm , 2019, Photonics Research.

[24]  Zi-hui Zhang,et al.  Effects of Meshed p-type Contact Structure on the Light Extraction Effect for Deep Ultraviolet Flip-Chip Light-Emitting Diodes , 2019, Nanoscale Research Letters.

[25]  T. Seong,et al.  The emergence and prospects of deep-ultraviolet light-emitting diode technologies , 2019, Nature Photonics.

[26]  Yoshinari Awaji,et al.  1.6-Gbps LED-Based Ultraviolet Communication at 280 nm in Direct Sunlight , 2018, 2018 European Conference on Optical Communication (ECOC).

[27]  H. Kuo,et al.  Ultrahigh Degree of Optical Polarization above 80% in AlGaN-Based Deep-Ultraviolet LED with Moth-Eye Microstructure , 2018 .

[28]  Temperature. , 2018, Nursing times.

[29]  Zhiyou Guo,et al.  Influence of Current Density and Capacitance on the Bandwidth of VLC LED , 2018, IEEE Photonics Technology Letters.

[30]  J. He,et al.  Optical anisotropy modulation in nonpolar a-plane AlGaN by manipulating the anisotropic in-plane strains through SiNx interlayers engineering , 2018 .

[31]  W. Ge,et al.  Local surface plasmon enhanced polarization and internal quantum efficiency of deep ultraviolet emissions from AlGaN-based quantum wells , 2017, Scientific Reports.

[32]  E. Ikonen,et al.  Temperature invariant energy value in LED spectra , 2016 .

[33]  H. Ryu,et al.  Numerical investigation of light extraction efficiency in AlGaN deep ultraviolet light-emitting diodes , 2013, 2013 Conference on Lasers and Electro-Optics Pacific Rim (CLEOPR).

[34]  Efrat Lifshitz,et al.  Suppression of Auger-stimulated efficiency droop in nitride-based light emitting diodes , 2013 .

[35]  Patrick Vogt,et al.  Optical polarization characteristics of ultraviolet (In)(Al)GaN multiple quantum well light emitting diodes , 2010 .

[36]  M. Kneissl,et al.  Enhancement of light extraction in ultraviolet light-emitting diodes using nanopixel contact design with Al reflector , 2010 .

[37]  Brian M. Sadler,et al.  Analytical performance study of solar blind non-line-of-sight ultraviolet short-range communication links. , 2008, Optics letters.

[38]  K. B. Nam,et al.  Unique optical properties of AlGaN alloys and related ultraviolet emitters , 2004 .

[39]  Howard E. Levin A complete and optimal data allocation method for practical discrete multitone systems , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[40]  E. F. Schubert,et al.  Current crowding and optical saturation effects in GaInN/GaN light-emitting diodes grown on insulating substrates , 2001 .

[41]  Zi-hui Zhang,et al.  The Effect of Sapphire Substrates on Omni-Directional Reflector Design for Flip-Chip Near-Ultraviolet Light-Emitting Diodes , 2019, IEEE Photonics Journal.

[42]  Michael Kneissl,et al.  A Brief Review of III-Nitride UV Emitter Technologies and Their Applications , 2016 .