A review on exudates detection methods for diabetic retinopathy.

The presence of exudates on the retina is the most characteristic symptom of diabetic retinopathy. As exudates are among early clinical signs of DR, their detection would be an essential asset to the mass screening task and serve as an important step towards automatic grading and monitoring of the disease. Reliable identification and classification of exudates are of inherent interest in an automated diabetic retinopathy screening system. Here we review the numerous early studies that used for automatic exudates detection with the aim of providing decision support in addition to reducing the workload of an ophthalmologist.

[1]  Hanung Adi Nugroho,et al.  Segmentation of exudates based on high pass filtering in retinal fundus images , 2015, 2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE).

[2]  Ole Vilhelm Larsen,et al.  Detection of abnormalities in retinal images using digital image analysis , 1999 .

[3]  P. Sharp,et al.  Automated detection and quantification of retinal exudates , 1993, Graefe's Archive for Clinical and Experimental Ophthalmology.

[4]  Alireza Osareh,et al.  A Computational-Intelligence-Based Approach for Detection of Exudates in Diabetic Retinopathy Images , 2009, IEEE Transactions on Information Technology in Biomedicine.

[5]  T. Ruba,et al.  Identification and segmentation of exudates using SVM classifier , 2015, 2015 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS).

[6]  Andrew Hunter,et al.  Optic nerve head segmentation , 2004, IEEE Transactions on Medical Imaging.

[7]  Gwénolé Quellec,et al.  Optimal Wavelet Transform for the Detection of Microaneurysms in Retina Photographs , 2008, IEEE Transactions on Medical Imaging.

[8]  Shuqian Luo,et al.  Support vector machine based method for identifying hard exudates in retinal images , 2009, 2009 IEEE Youth Conference on Information, Computing and Telecommunication.

[9]  Suman K. Mitra,et al.  A Bayesian network based sequential inference for diagnosis of diseases from retinal images , 2005, Pattern Recognit. Lett..

[10]  Bunyarit Uyyanonvara,et al.  Comparative analysis of automatic exudate detection algorithms , 2010 .

[11]  Roberto Hornero,et al.  Neural network based detection of hard exudates in retinal images , 2009, Comput. Methods Programs Biomed..

[12]  Bunyarit Uyyanonvara,et al.  Automatic detection of diabetic retinopathy exudates from non-dilated retinal images using mathematical morphology methods , 2008, Comput. Medical Imaging Graph..

[13]  Samuel C. Lee,et al.  Computer classification of nonproliferative diabetic retinopathy. , 2005, Archives of ophthalmology.

[14]  Huiqi Li,et al.  Automated feature extraction in color retinal images by a model based approach , 2004, IEEE Transactions on Biomedical Engineering.

[15]  Marios S. Pattichis,et al.  A Multiscale Optimization Approach to Detect Exudates in the Macula , 2014, IEEE Journal of Biomedical and Health Informatics.

[16]  Hossein Rabbani,et al.  Automatic detection of exudates and optic disk in retinal images using curvelet transform , 2012 .

[17]  C.E. Hann,et al.  Diabetic Retinopathy detection using geometrical techniques related to the underlying physiology , 2010, 2010 25th International Conference of Image and Vision Computing New Zealand.

[18]  P Gain,et al.  Evaluation of automated fundus photograph analysis algorithms for detecting microaneurysms, haemorrhages and exudates, and of a computer-assisted diagnostic system for grading diabetic retinopathy. , 2010, Diabetes & metabolism.

[19]  Ahmad Taher Azar,et al.  Classification and Detection of Diabetic Retinopathy , 2013, Advances in Intelligent Analysis of Medical Data and Decision Support Systems.

[20]  Chanjira Sinthanayothin,et al.  Detection of exudates from retinal images using morphological compact tree , 2016, 2016 13th International Joint Conference on Computer Science and Software Engineering (JCSSE).

[21]  B. Thomas,et al.  Automated identification of diabetic retinal exudates in digital colour images , 2003, The British journal of ophthalmology.

[22]  Mong-Li Lee,et al.  The role of domain knowledge in the detection of retinal hard exudates , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[23]  C. J. Taylor,et al.  Image analysis of fundus photographs. The detection and measurement of exudates associated with diabetic retinopathy. , 1989, Ophthalmology.

[24]  Majid Mirmehdi,et al.  Comparative Exudate Classification Using Support Vector Machines and Neural Networks , 2002, MICCAI.

[25]  D. Kavitha,et al.  Automatic detection of optic disc and exudates in retinal images , 2005, Proceedings of 2005 International Conference on Intelligent Sensing and Information Processing, 2005..

[26]  U. Rajendra Acharya,et al.  Automated Identification of Diabetic Retinopathy Stages Using Digital Fundus Images , 2008, Journal of Medical Systems.

[27]  Peter F. Sharp,et al.  Automated microaneurysm detection using local contrast normalization and local vessel detection , 2006, IEEE Transactions on Medical Imaging.

[28]  J. Boyce,et al.  Automated detection of diabetic retinopathy in digital retinal images: a tool for diabetic retinopathy screening , 2004, Diabetic medicine : a journal of the British Diabetic Association.

[29]  Jayanthi Sivaswamy,et al.  Automatic assessment of macular edema from color retinal images , 2012, IEEE Transactions on Medical Imaging.

[30]  Sven Loncaric,et al.  Detection of exudates in fundus photographs using convolutional neural networks , 2015, 2015 9th International Symposium on Image and Signal Processing and Analysis (ISPA).

[31]  Nidiyare Hevia Montiel,et al.  Mean Shift Based Automatic Detection of Exudates in Retinal Images , 2012, IP&C.

[32]  Bunyarit Uyyanonvara,et al.  Automatic Exudate Detection from Non-dilated Diabetic Retinopathy Retinal Images Using Fuzzy C-means Clustering , 2009, Sensors.

[33]  T. Williamson,et al.  Automatic detection of diabetic retinopathy using an artificial neural network: a screening tool. , 1996, The British journal of ophthalmology.

[34]  Bunyarit Uyyanonvara,et al.  Automatic exudate detection for diabetic retinopathy screening , 2009 .

[35]  Chanjira Sinthanayothin,et al.  Automated screening system for diabetic retinopathy , 2003, 3rd International Symposium on Image and Signal Processing and Analysis, 2003. ISPA 2003. Proceedings of the.

[36]  Ahmed Wasif Reza,et al.  Diagnosis of Diabetic Retinopathy: Automatic Extraction of Optic Disc and Exudates from Retinal Images using Marker-controlled Watershed Transformation , 2009, Journal of Medical Systems.

[37]  B. van Ginneken,et al.  Automated detection and differentiation of drusen, exudates, and cotton-wool spots in digital color fundus photographs for diabetic retinopathy diagnosis. , 2007, Investigative ophthalmology & visual science.

[38]  Roberto Hornero,et al.  Detection of Hard Exudates in Retinal Images Using a Radial Basis Function Classifier , 2009, Annals of Biomedical Engineering.

[39]  Langis Gagnon,et al.  Procedure to detect anatomical structures in optical fundus images , 2001, SPIE Medical Imaging.

[40]  Keshab K. Parhi,et al.  DREAM: Diabetic Retinopathy Analysis Using Machine Learning , 2014, IEEE Journal of Biomedical and Health Informatics.

[41]  Diptoneel Kayal,et al.  An Approach to Detect Hard Exudates Using Normalized Cut Image Segmentation Technique in Digital Retinal Fundus Image , 2012 .

[42]  Ole Vilhelm Larsen,et al.  Screening for diabetic retinopathy using computer based image analysis and statistical classification , 2000, Comput. Methods Programs Biomed..

[43]  András Hajdu,et al.  Automatic exudate detection by fusing multiple active contours and regionwise classification , 2014, Comput. Biol. Medicine.

[44]  Alfredo Ruggeri,et al.  A Markov Random Field Approach to Outline Lesions in Fundus Images , 2009 .

[45]  J. C. Dunn,et al.  A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters , 1973 .

[46]  T. N. Nagabhushan,et al.  An ensemble approach to detect exudates in digital fundus images , 2016, 2016 Second International Conference on Cognitive Computing and Information Processing (CCIP).

[47]  C. Sinthanayothin,et al.  Automated detection of diabetic retinopathy on digital fundus images , 2002, Diabetic medicine : a journal of the British Diabetic Association.

[48]  Gerald Schaefer,et al.  An Investigation into Neural Networks for the Detection of Exudates in Retinal Images , 2009 .

[49]  P. C. Siddalingaswamy,et al.  Automated Detection of Optic Disc and Exudates in Retinal Images , 2009 .

[50]  Marios S. Pattichis,et al.  Multiscale AM-FM Methods for Diabetic Retinopathy Lesion Detection , 2010, IEEE Transactions on Medical Imaging.

[51]  Victor Murray,et al.  Automatic detection of diabetic retinopathy and age-related macular degeneration in digital fundus images. , 2011, Investigative ophthalmology & visual science.

[52]  Pascale Massin,et al.  A contribution of image processing to the diagnosis of diabetic retinopathy-detection of exudates in color fundus images of the human retina , 2002, IEEE Transactions on Medical Imaging.

[53]  Xiaohui Zhang,et al.  Detection and classification of bright lesions in color fundus images , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[54]  Wei Lin,et al.  Automated detection of exudates on color fundus image using region merging by k-NN graph , 2008 .

[55]  S. Karpagavalli,et al.  Diabetic retinal exudates detection using machine learning techniques , 2015, 2015 International Conference on Advanced Computing and Communication Systems.

[56]  Ruttikorn Varakulsiripunth,et al.  Feature extraction from retinal fundus image for early detection of diabetic retinopathy , 2013, 2013 IEEE Region 10 Humanitarian Technology Conference.

[57]  Anushikha Singh,et al.  Automatic exudates detection in fundus image using intensity thresholding and morphology , 2015, 2015 7th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT).

[58]  Xinpeng Zhang,et al.  Hard Exudates Detection Method Based on Background-Estimation , 2015, ICIG.

[59]  Somsak Choomchuay,et al.  Automated detection of exudates using histogram analysis for Digital Retinal Images , 2016, 2016 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS).