Subgradient and sampling algorithms for l1 regression
暂无分享,去创建一个
[1] A E Bostwick,et al. THE THEORY OF PROBABILITIES. , 1896, Science.
[2] Naum Zuselevich Shor,et al. Minimization Methods for Non-Differentiable Functions , 1985, Springer Series in Computational Mathematics.
[3] László Lovász,et al. Algorithmic theory of numbers, graphs and convexity , 1986, CBMS-NSF regional conference series in applied mathematics.
[4] Hiroshi Imai,et al. Algorithms for vertical and orthogonal L1 linear approximation of points , 1988, SCG '88.
[5] Nimrod Megiddo,et al. Linear time algorithms for some separable quadratic programming problems , 1993, Oper. Res. Lett..
[6] Kenneth L. Clarkson,et al. Las Vegas algorithms for linear and integer programming when the dimension is small , 1995, JACM.
[7] Alexander Schrijver,et al. Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.
[8] Dimitri P. Bertsekas,et al. Incremental Subgradient Methods for Nondifferentiable Optimization , 2001, SIAM J. Optim..
[9] Petros Drineas,et al. Fast Monte-Carlo algorithms for approximate matrix multiplication , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.
[10] Piotr Indyk,et al. Approximate clustering via core-sets , 2002, STOC '02.
[11] Sariel Har-Peled,et al. Projective clustering in high dimensions using core-sets , 2002, SCG '02.
[12] Andreas Maurer. A bound on the deviation probability for sums of non-negative random variables. , 2003 .
[13] Luis E. Ortiz,et al. Concentration Inequalities for the Missing Mass and for Histogram Rule Error , 2003, J. Mach. Learn. Res..
[14] Pankaj K. Agarwal,et al. Approximating extent measures of points , 2004, JACM.
[15] A. Banerjee. Convex Analysis and Optimization , 2006 .
[16] Petros Drineas,et al. Fast Monte Carlo Algorithms for Matrices I: Approximating Matrix Multiplication , 2006, SIAM J. Comput..