Bioconversion of Lignocellulose Materials

One of the most economically viable processes for the bioconversion of many lignoceilulosie waste is represented by white rot fungi. Phanerochaete chrysosporium is one of the important commercially cultivated fungi which exhibit varying abilities to utilize different lignoceilulosic as growth substrate. Examination of the lignoceilulolytic enzyme profiles of the two organisms Phanerochaete chrysosporium and Rhizopus stolonifer show this diversity to be reflected in qualitative variation in the major enzymatic determinants (ie cellulase, xylanase, ligninase and etc) required for substrate bioconversion. For example P. chrysosporium which is cultivated on highly lignified substrates such as wood (or) sawdust, produces two extracellular enzymes which have associated with lignin deploymerization. (Mn peroxidase and lignin peroxidase). Conversely Rhizopus stolonifer which prefers high cellulose and low lignin containg substrates produce a family of cellulolytic enzymes including at least cellobiohydrolases and β-glucosidascs, but very low level of recognized lignin degrading enzymes.

[1]  C. Hesseltine,et al.  Biotechnology report: Solid state fermentations , 1972, Biotechnology and bioengineering.

[2]  J. Abrams Recent Advances in Animal Nutrition , 1982 .

[3]  C. Evans,et al.  The enzymic degradation of lignin by white-rot fungi , 1983 .

[4]  Arnold L. Demain,et al.  Manual of Industrial Microbiology and Biotechnology , 1986 .

[5]  C. A. Reddy,et al.  Purification and characterization of glucose oxidase from ligninolytic cultures of Phanerochaete chrysosporium , 1986, Journal of bacteriology.

[6]  Alan J. McCarthy,et al.  Lignocellulose-degrading actinomycetes , 1987 .

[7]  P. Kersten,et al.  Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium , 1987, Journal of bacteriology.

[8]  J. Coombs EEC resources and strategies , 1987, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[9]  D. Eveleigh Cellulase: a perspective , 1987, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[10]  John G. Anderson,et al.  Bioprocessing of lignocelluloses , 1987, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[11]  K. Eriksson,et al.  Formation, purification, and partial characterisation of methanol oxidase, a H2O2-producing enzyme in Phanerochaete chrysosporium , 1987 .

[12]  Rafael Vicuña,et al.  Bacterial degradation of lignin , 1988 .

[13]  R. Bourbonnais,et al.  Veratryl alcohol oxidases from the lignin-degrading basidiomycete Pleurotus sajor-caju. , 1988, The Biochemical journal.

[14]  Wolfgang Zimmermann,et al.  Degradation of lignin by bacteria , 1990 .

[15]  R. A. Grayling,et al.  celB, a gene coding for a bifunctional cellulase from the extreme thermophile "Caldocellum saccharolyticum" , 1990, Applied and environmental microbiology.

[16]  Douglas E. Eveleigh,et al.  Characteristics of fungal cellulases , 1991 .

[17]  W. Bao,et al.  Triiodide reduction by cellobiose: quinone oxidoreductase of Phanerochaete chrysosporium , 1991, FEBS letters.

[18]  A. Ball,et al.  Biosynthesis and Structure of Lignocellulose , 1991 .

[19]  Walter Steiner,et al.  Production of Trichoderma cellulase in laboratory and pilot scale , 1991 .

[20]  H. Grethlein,et al.  Common aspects of acid prehydrolysis and steam explosion for pretreating wood , 1991 .

[21]  W. B. Betts Biodegradation : natural and synthetic materials , 1991 .

[22]  T. Wood Fungal cellulases. , 1992, Biochemical Society transactions.

[23]  Gerardo Saucedo-Castañeda,et al.  Scale-up strategies for solid state fermentation systems , 1992 .

[24]  G. Hazlewood,et al.  Hemicellulose and hemicellulases , 1993 .

[25]  Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium. , 1993 .

[26]  M. Pal,et al.  Solid-state fermentation of sugarcane bagasse with Flammulina velutipes and Trametes versicolor , 1995, World journal of microbiology & biotechnology.

[27]  O. Milstein,et al.  Isolation of microorganisms with lignin transformation potential from soil of Tenerife island , 1995 .

[28]  Poonam Singh Nee Nigam,et al.  PROCESSES FOR FERMENTATIVE PRODUCTION OF XYLITOL - A SUGAR SUBSTITUTE , 1995 .

[29]  K. Beauchemin,et al.  Fibrolytic enzymes increase fiber digestibility and growth rate of steers fed dry forages , 1995 .

[30]  D. Kilburn,et al.  Cellobiohydrolase B, a second exo-cellobiohydrolase from the cellulolytic bacterium Cellulomonas fimi. , 1995, The Biochemical journal.

[31]  A. Sethuraman,et al.  Alterations in structure, chemistry, and biodegradability of grass lignocellulose treated with the white rot fungi Ceriporiopsis subvermispora and Cyathus stercoreus , 1995, Applied and environmental microbiology.

[32]  D. Haltrich,et al.  Production of fungal xylanases , 1996 .

[33]  P. Chahal,et al.  Production of Cellulase in Solid-State Fermentation with Trichoderma reesei MCG 80 on Wheat Straw , 1996 .

[34]  C. Christophersen,et al.  Xylanases in Wheat Separation , 1997 .

[35]  Richard T. Elander,et al.  Survey and analysis of commercial cellulase preparations suitable for biomass conversion to ethanol , 1997 .

[36]  H. Call,et al.  History, overview and applications of mediated lignolytic systems, especially laccase-mediator-systems (Lignozym-process) , 1997 .

[37]  Ross E. Swaney,et al.  New technology for papermaking : commercializing biopulping , 1998 .

[38]  J. Laherrère,et al.  The End of Cheap Oil , 1998 .

[39]  F. Bosco,et al.  Performances of a trickle-bed reactor (TBR) for exoenzymes production by Phanerochaete chrysosporium : influence of superfacial liquid velocity , 1999 .

[40]  M. Bhat,et al.  Cellulases and related enzymes in biotechnology. , 2000, Biotechnology advances.

[41]  K. Zeitsch,et al.  The Chemistry and Technology of Furfural and Its Many By-Products , 2000 .

[42]  M. Bhat,et al.  Research review paper Cellulases and related enzymes in biotechnology , 2000 .

[43]  L. Jecu Solid state fermentation of agricultural wastes for endoglucanase production , 2000 .

[44]  B. Henrissat,et al.  Glycoside hydrolases and glycosyltransferases. Families, modules, and implications for genomics. , 2000, Plant physiology.

[45]  J. Wiseman,et al.  The use of enzymes in ruminant diets , 2001 .

[46]  G J Davies,et al.  The structure of the feruloyl esterase module of xylanase 10B from Clostridium thermocellum provides insights into substrate recognition. , 2001, Structure.

[47]  Q. Beg,et al.  Microbial xylanases and their industrial applications: a review , 2001, Applied Microbiology and Biotechnology.

[48]  D. Montané,et al.  High-temperature dilute-acid hydrolysis of olive stones for furfural production , 2002 .

[49]  Ye Sun,et al.  Hydrolysis of lignocellulosic materials for ethanol production: a review. , 2002, Bioresource technology.

[50]  S. Subramaniyan,et al.  Biotechnology of Microbial Xylanases: Enzymology, Molecular Biology, and Application , 2002, Critical reviews in biotechnology.

[51]  D. S. Arora,et al.  Involvement of lignin peroxidase, manganese peroxidase and laccase in degradation and selective ligninolysis of wheat straw , 2002 .

[52]  T. E. Cloete,et al.  Lignocellulose biodegradation: Fundamentals and applications , 2002 .

[53]  Y. Shoham,et al.  Microbial hemicellulases. , 2003, Current opinion in microbiology.

[54]  R. Mackie,et al.  Opportunities to improve fiber degradation in the rumen: microbiology, ecology, and genomics. , 2003, FEMS microbiology reviews.

[55]  N. Walton,et al.  Molecules of Interest: Vanillin , 2003 .

[56]  G. Ghorbani,et al.  Effects of bacterial direct-fed microbials and yeast on site and extent of digestion, blood chemistry, and subclinical ruminal acidosis in feedlot cattle. , 2003, Journal of animal science.

[57]  F. Tjerneld,et al.  Purification and characterization of five cellulases and one xylanase from Penicillium brasilianum IBT 20888 , 2003 .

[58]  Petr Baldrian,et al.  Lignocellulose degradation by Pleurotus ostreatus in the presence of cadmium. , 2003, FEMS microbiology letters.

[59]  B. Ruggeri,et al.  Experimental sensitivity analysis of a trickle bed bioreactor for lignin peroxidases production by P. chrysosporium , 2003 .

[60]  R. C. Rodrigues,et al.  Dilute-acid hydrolysis for optimization of xylose recovery from rice straw in a semi-pilot reactor , 2003 .

[61]  A. Rodríguez,et al.  Limited degradation of industrial, synthetic and natural lignins by Serratia marcescens , 1994, Biotechnology Letters.

[62]  A. Fiechter,et al.  On the bacterial degradation of lignin , 1982, European journal of applied microbiology and biotechnology.

[63]  M. Rabinovich,et al.  Dedicated to the memory of I.V. Berezin and R.V. Feniksova Microbial Cellulases (Review) , 2002, Applied Biochemistry and Microbiology.

[64]  S. Rodríguez Couto,et al.  New uses of food waste: application to laccase production by Trametes hirsuta , 2002, Biotechnology Letters.

[65]  M. Rabinovich,et al.  The Structure and Mechanism of Action of Cellulolytic Enzymes , 2002, Biochemistry (Moscow).

[66]  Joel S. Levine,et al.  Biomass burning and global change , 2008 .

[67]  Daniel van den Pas Chemicals from Lignin , 2008 .