Deterministic CNOT gate and entanglement swapping for photonic qubits using a quantum-dot spin in a double-sided optical microcavity

Abstract Abstract We propose a deterministic and scalable scheme to construct a two-qubit controlled-NOT (CNOT) gate and realize entanglement swapping between photonic qubits using a quantum-dot (QD) spin in a double-sided optical microcavity. The scheme is based on spin selective photon reflection from the cavity and can be achieved in a nondestructive and heralded way. We assess the feasibility of the scheme and show that the scheme can work in both the weak coupling and the strong coupling regimes. The scheme opens promising perspectives for long-distance photonic quantum communication and distributed quantum information processing.

[1]  L. J. Sham,et al.  Fast initialization of the spin state of an electron in a quantum dot in the Voigt configuration. , 2006, Physical Review Letters.

[2]  M. Feng,et al.  Teleportation of an arbitrary multipartite state via photonic Faraday rotation , 2010, 1004.2314.

[3]  King,et al.  Experimental Determination of the Motional Quantum State of a Trapped Atom. , 1996, Physical review letters.

[4]  Shigeki Takeuchi,et al.  Quantum phase gate for photonic qubits using only beam splitters and postselection , 2001, quant-ph/0111092.

[5]  Jian Li,et al.  Quantum control gates with weak cross-Kerr nonlinearity , 2008, 0811.3364.

[6]  Guo-Jian Yang,et al.  Generation and discrimination of a type of four-partite entangled state , 2008 .

[7]  J. Raimond,et al.  Simple cavity-QED two-bit universal quantum logic gate: The principle and expected performances. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[8]  T. Ralph,et al.  Demonstration of an all-optical quantum controlled-NOT gate , 2003, Nature.

[9]  Quantum logic gates for hot ions without a speed limitation. , 2003, Physical review letters.

[10]  P. Zoller,et al.  Complete Characterization of a Quantum Process: The Two-Bit Quantum Gate , 1996, quant-ph/9611013.

[11]  Pieter Kok,et al.  Effects of self-phase-modulation on weak nonlinear optical quantum gates , 2007, 0710.1810.

[12]  Katherine Truex,et al.  Fast spin rotations by optically controlled geometric phases in a charge-tunable InAs quantum dot. , 2010, Physical review letters.

[13]  Implementing one-photon three-qubit quantum gates using spatial light modulators , 2012 .

[14]  Masato Koashi,et al.  Simple experimental scheme of preparing a four-photon entangled state for the teleportation-based realization of a linear optical controlled-NOT gate , 2005 .

[15]  Dirk Reuter,et al.  Radiatively limited dephasing in InAs quantum dots , 2004 .

[16]  Marco Fiorentino,et al.  Single-photon two-qubit SWAP gate for entanglement manipulation (4 pages) , 2005 .

[17]  Blatt,et al.  "Dark" squeezed states of the motion of a trapped ion. , 1993, Physical review letters.

[18]  Jian-Wei Pan,et al.  Optical Nondestructive Controlled-NOT Gate without Using Entangled Photons , 2007 .

[19]  H. Kimble,et al.  Scalable photonic quantum computation through cavity-assisted interactions. , 2004, Physical review letters.

[20]  Moussa Teleportation of a cavity-radiation-field state: An alternative scheme. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[21]  Khaled Karrai,et al.  Quantum-Dot Spin-State Preparation with Near-Unity Fidelity , 2006, Science.

[22]  X. Zou,et al.  Generation of an entangled four-photon W state , 2002, quant-ph/0202090.

[23]  K. Mølmer,et al.  QUANTUM COMPUTATION WITH IONS IN THERMAL MOTION , 1998, quant-ph/9810039.

[24]  Barenco,et al.  Conditional Quantum Dynamics and Logic Gates. , 1995, Physical review letters.

[25]  Vogel,et al.  Even and odd coherent states of the motion of a trapped ion. , 1996, Physical review letters.

[26]  A. Shabaev,et al.  Mode Locking of Electron Spin Coherences in Singly Charged Quantum Dots , 2006, Science.

[27]  Pierre M. Petroff,et al.  A Coherent Single-Hole Spin in a Semiconductor , 2009, Science.

[28]  J. Hvam,et al.  Long lived coherence in self-assembled quantum dots. , 2001, Physical review letters.

[29]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[30]  N. K. Langford,et al.  Linear optical controlled- NOT gate in the coincidence basis , 2002 .

[31]  Guang-Can Guo,et al.  Scheme for preparation of the W state via cavity quantum electrodynamics , 2002 .

[32]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.

[33]  An-Ning Zhang,et al.  Experimental demonstration of a nondestructive controlled-NOT quantum gate for two independent photon qubits. , 2004, Physical review letters.

[34]  C. Monroe,et al.  Observation of entanglement between a single trapped atom and a single photon , 2004, Nature.

[35]  Blatt,et al.  Trapped ions in the strong-excitation regime: Ion interferometry and nonclassical states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[36]  Jaromir Fiurasek,et al.  Linear optical Fredkin gate based on partial-SWAP gate , 2008, 0809.3228.

[37]  Kyu-Hwang Yeon,et al.  Optically controlled phase gate and teleportation of a controlled-not gate for spin qubits in a quantum-dot–microcavity coupled system , 2013, 1306.4737.

[38]  Ping Xu,et al.  Experimental realization of a controlled-NOT gate with four-photon six-qubit cluster states. , 2009, Physical review letters.

[39]  Guang-Can Guo,et al.  Linear optical scheme for direct implementation of a nondestructive N -qubit controlled phase gate , 2006 .

[40]  D D Awschalom,et al.  Ultrafast Manipulation of Electron Spin Coherence , 2001, Science.

[41]  Sleator,et al.  Realizable Universal Quantum Logic Gates. , 1995, Physical review letters.

[42]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[43]  C. H. Oh,et al.  Quantum information processing with a single photon by input-output process regarding low-Q cavities , 2009, 0902.1372.

[44]  A Lemaître,et al.  Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. , 2004, Physical review letters.

[45]  Guang-Can Guo,et al.  Methods for a linear optical quantum Fredkin gate , 2008, 0804.0992.

[46]  Davidovich,et al.  Teleportation of an atomic state between two cavities using nonlocal microwave fields. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[47]  Christian Schneider,et al.  AlAs∕GaAs micropillar cavities with quality factors exceeding 150.000 , 2007 .

[48]  Andrew G. Glen,et al.  APPL , 2001 .

[49]  G. Rupper,et al.  Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity , 2004, Nature.

[50]  Cristian Bonato,et al.  CNOT and Bell-state analysis in the weak-coupling cavity QED regime. , 2010, Physical review letters.

[51]  L. Liang Realization of quantum SWAP gate between flying and stationary qubits (4 pages) , 2005 .

[52]  L. A. Coldren,et al.  Picosecond Coherent Optical Manipulation of a Single Electron Spin in a Quantum Dot , 2008, Science.

[53]  W. J. Munro,et al.  Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity , 2009, 0910.4549.

[54]  G. Rempe,et al.  Photon-photon entanglement with a single trapped atom. , 2008, Physical review letters.

[55]  William J. Munro,et al.  Deterministic photon entangler using a charged quantum dot inside a microcavity , 2008 .

[56]  Kyu-Hwang Yeon,et al.  Simple implementation of discrete quantum Fourier transform via cavity quantum electrodynamics , 2011 .

[57]  X. Zou,et al.  Quantum entanglement of four distant atoms trapped in different optical cavities , 2004 .

[58]  H. Weinfurter,et al.  Linear optics controlled-phase gate made simple. , 2005, Physical Review Letters.

[59]  Guang-Can Guo,et al.  Linear optical implementation of the two-qubit controlled phase gate with conventional photon detectors , 2007 .

[60]  Cirac,et al.  Schemes for atomic-state teleportation. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[61]  King,et al.  Demonstration of a fundamental quantum logic gate. , 1995, Physical review letters.

[62]  V. Kulakovskii,et al.  Strong coupling in a single quantum dot–semiconductor microcavity system , 2004, Nature.

[63]  M. J. Fitch,et al.  Experimental controlled-NOT logic gate for single photons in the coincidence basis , 2003, quant-ph/0303095.

[64]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[65]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[66]  Gardiner,et al.  Decoherence, continuous observation, and quantum computing: A cavity QED model. , 1995, Physical review letters.

[67]  Yanwen Wu,et al.  Fast spin state initialization in a singly charged InAs-GaAs quantum dot by optical cooling. , 2007, Physical review letters.

[68]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[69]  Thaddeus D. Ladd,et al.  Complete quantum control of a single quantum dot spin using ultrafast optical pulses , 2008, Nature.

[70]  C. Hu,et al.  Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity , 2010, 1005.5545.

[71]  Blatt,et al.  Preparation of Fock states by observation of quantum jumps in an ion trap. , 1993, Physical review letters.

[72]  S. Economou,et al.  Optical spin initialization and nondestructive measurement in a quantum dot molecule , 2008, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[73]  L. C. Kwek,et al.  Scheme for unconventional geometric quantum computation in cavity QED , 2006, quant-ph/0606098.

[74]  W. Munro,et al.  A near deterministic linear optical CNOT gate , 2004 .

[75]  J. L. O'Brien,et al.  Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon , 2007, 0708.2019.

[76]  I. Chuang,et al.  Quantum Teleportation is a Universal Computational Primitive , 1999, quant-ph/9908010.

[77]  Shou Zhang,et al.  Linear optical generation of multipartite entanglement with conventional photon detectors , 2009 .

[78]  C. Emary,et al.  Optically controlled single-qubit rotations in self-assembled InAs quantum dots , 2006, cond-mat/0608518.

[79]  C. Gerry Generation of Schrödinger cats and entangled coherent states in the motion of a trapped ionby a dispersive interaction , 1997 .

[80]  R. Blatt,et al.  Entangled states of trapped atomic ions , 2008, Nature.

[81]  J. Eisert,et al.  Experimental implementation of the optimal linear-optical controlled phase gate. , 2010, Physical review letters.

[82]  D. Bimberg,et al.  Ultralong dephasing time in InGaAs quantum dots. , 2001, Physical review letters.

[83]  Miloslav Dusek,et al.  Experimental realization of linear-optical partial swap gates. , 2008, Physical review letters.

[84]  Guang-Can Guo,et al.  Experimental teleportation of a quantum controlled-NOT gate. , 2004, Physical review letters.

[85]  Light-shift-induced quantum gates for ions in thermal motion. , 2001, Physical review letters.

[86]  Shih,et al.  New high-intensity source of polarization-entangled photon pairs. , 1995, Physical review letters.

[87]  Pedro Chamorro-Posada,et al.  Quantum computer networks with the orbital angular momentum of light , 2012, 1207.0585.

[88]  J. D. Franson,et al.  Probabilistic quantum logic operations using polarizing beam splitters , 2001, quant-ph/0107091.

[89]  M. Bayer,et al.  Ultrafast optical rotations of electron spins in quantum dots , 2009, 0910.3940.