Towards a new approximation for pair-production and associated-production of the Higgs boson

A bstractWe propose that loop integrals with internal heavy particles can be evaluated by expanding in the limit of small external masses. This provides a systematically improvable approximation to the integrals in the entire phase space, and works particularly well for the high energy tails of kinematic distributions (where the usual 1/M expansions cease to be valid). We demonstrate our method using Higgs boson pair production as an example. We find that at both one-loop and two-loop, our method provides good approximations to the integrals appearing in the scattering amplitudes. Comparing to existing expansion methods, our method are not restricted to a special phase space region. Combining our efficient method to compute the two-loop amplitude with an infrared subtraction method for the real emission corrections, we expect to have a fast and reliable tool to calculate the differential cross sections for Higgs boson pair production. This will be useful for phenomenological studies and for the extraction of the Higgs self-coupling from future experimental data. Our method can also be applied to other processes, such as the associated production of the Higgs boson with a jet or a Z boson.

[1]  A. Smirnov Algorithm FIRE—Feynman Integral REduction , 2008, 0807.3243.

[2]  G. Luisoni,et al.  Next-to-Leading-Order QCD Corrections to Higgs Boson Plus Jet Production with Full Top-Quark Mass Dependence. , 2018, Physical review letters.

[3]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[4]  T. Gehrmann,et al.  NNLO QCD corrections to Higgs boson production at large transverse momentum , 2016, Journal of High Energy Physics.

[5]  T. Hahn,et al.  Automatized One-Loop Calculations in 4 and D dimensions , 1998 .

[6]  M. Steinhauser,et al.  On top quark mass effects to gg → ZH at NLO , 2016, 1611.05881.

[7]  C. Focke,et al.  Z-Boson Production in Association with a Jet at Next-To-Next-To-Leading Order in Perturbative QCD. , 2015, Physical review letters.

[8]  V. Ravindran,et al.  Two-loop massless QCD corrections to the g + g → H + H four-point amplitude , 2018, Journal of High Energy Physics.

[9]  T. Gehrmann,et al.  Precise QCD predictions for the production of Higgs + jet final states , 2014, 1408.5325.

[10]  K. Melnikov,et al.  Higgs bosons with large transverse momentum at the LHC , 2018, Physics Letters B.

[11]  D. Graudenz,et al.  MSSM Higgs Boson Production at the LHC , 1997, hep-ph/9703355.

[12]  H. Gangl,et al.  From polygons and symbols to polylogarithmic functions , 2011, 1110.0458.

[13]  T. Neumann,et al.  Higgs bosons at high pT , 2016, 1609.00367.

[14]  Gudrun Heinrich,et al.  pySecDec: A toolbox for the numerical evaluation of multi-scale integrals , 2017, Comput. Phys. Commun..

[15]  R. N. Lee Presenting LiteRed: a tool for the Loop InTEgrals REDuction , 2012, 1212.2685.

[16]  C. Meyer Transforming differential equations of multi-loop Feynman integrals into canonical form , 2016, 1611.01087.

[17]  R. Lee Reducing differential equations for multiloop master integrals , 2014, 1411.0911.

[18]  K. Melnikov,et al.  Higgs boson production in association with a jet at next-to-next-to-leading order in perturbative QCD , 2013, Journal of High Energy Physics.

[19]  T. Neumann NLO Higgs+jet at large transverse momenta including top quark mass effects , 2018 .

[20]  S. Caron-Huot,et al.  Iterative structure of finite loop integrals , 2014, Journal of High Energy Physics.

[21]  Matthias Steinhauser,et al.  Higgs boson pair production: top quark mass effects at NLO and NNLO , 2015, 1508.00909.

[22]  B. M. Fulk MATH , 1992 .

[23]  J. Henn Lectures on differential equations for Feynman integrals , 2014, 1412.2296.

[24]  Wen-Long Sang,et al.  Mixed electroweak-QCD corrections to e+e-→HZ at Higgs factories , 2016, 1609.03995.

[25]  C. Focke,et al.  Higgs boson production in association with a jet using jettiness subtraction , 2015 .

[26]  C. Studerus,et al.  Calculation of the quark and gluon form factors to three loops in QCD , 2010, 1004.3653.

[27]  Andreas Papaefstathiou,et al.  Higgs boson pair production in the D = 6 extension of the SM , 2014, 1410.3471.

[28]  D. Rathlev,et al.  Differential Higgs boson pair production at next-to-next-to-leading order in QCD , 2016, 1606.09519.

[29]  R. Bonciani,et al.  Two-loop master integrals for the planar QCD massive corrections to di-photon and di-jet hadro-production , 2017, 1712.02537.

[30]  A. V. Smirnov,et al.  FIRE4, LiteRed and accompanying tools to solve integration by parts relations , 2013, Comput. Phys. Commun..

[31]  A. Manteuffel,et al.  A non-planar two-loop three-point function beyond multiple polylogarithms , 2017, 1701.05905.

[32]  K. Melnikov,et al.  Two-loop amplitudes for processes gg → Hg, qg → Hq and qq¯→Hg$$ \mathrm{q}\overline{\mathrm{q}}\to \mathrm{H}\mathrm{g} $$ at large Higgs transverse momentum , 2017, 1712.06549.

[33]  G. Polesello,et al.  Searching for heavy Higgs bosons in the tt¯Z$$ t\overline{t}Z $$ and tbW final states , 2018, Journal of High Energy Physics.

[34]  F. Tkachov,et al.  Integration by parts: The algorithm to calculate β-functions in 4 loops , 1981 .

[35]  T. Plehn,et al.  PAIR PRODUCTION OF NEUTRAL HIGGS PARTICLES IN GLUON-GLUON COLLISIONS , 1996 .

[36]  A. Goncharov,et al.  Classical polylogarithms for amplitudes and Wilson loops. , 2010, Physical review letters.

[37]  P. Mastrolia,et al.  Magnus and Dyson series for Master Integrals , 2014, 1401.2979.

[38]  C. Anastasiou,et al.  Higgs boson gluon-fusion production in QCD at three loops. , 2015, Physical review letters.

[39]  Ramona Gröber,et al.  On the two-loop virtual QCD corrections to Higgs boson pair production in the standard model , 2016, 1603.00385.

[40]  J. T. Childers,et al.  Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at √s = 8 TeV with ATLAS , 2014, 1407.4222.

[41]  M. Czakon,et al.  Two loop correction to interference in gg → ZZ , 2016, 1605.01380.

[42]  J. Bij,et al.  HIGGS BOSON PAIR PRODUCTION VIA GLUON FUSION , 1988 .

[43]  Li Lin Yang,et al.  Mixed QCD-EW corrections for Higgs boson production at $e^+e^-$ colliders , 2016, 1609.03955.

[44]  K. Melnikov,et al.  Higgs boson production in association with a jet at next-to-next-to-leading order , 2015, 1504.07922.

[45]  U. Baur,et al.  Higgs Boson Production at Large Transverse Momentum in Hadronic Collisions , 1990 .

[46]  Kuo-Tsai Chen,et al.  Iterated path integrals , 1977 .

[47]  S. Y. Shim,et al.  Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector , 2016 .

[48]  T. Hussain,et al.  Measurement of Ds+ production and nuclear modification factor in Pb-Pb collisions at sNN=2.76$$ \sqrt{{\mathrm{s}}_{\mathrm{NN}}}=2.76 $$ TeV , 2016 .

[49]  A. Kotikov Differential equation method: The Calculation of N point Feynman diagrams , 1991 .

[50]  M. Steinhauser,et al.  Quark and gluon form factors to three loops. , 2009, Physical review letters.

[51]  Marcia Begalli,et al.  Combined measurement of differential and total cross sections in the H → γγ and the H → ZZ⁎ → 4ℓ decay channels at s=13 TeV with the ATLAS detector , 2018, Physics Letters B.

[52]  A. Kotikov Differential equations method. New technique for massive Feynman diagram calculation , 1991 .

[53]  D. F. Lodato,et al.  Λ c + production in pp collisions at √s=7 TeV and in p-Pb collisions at √sNN=5.02 TeV , 2017, 1712.09581.

[54]  Ramona Gröber,et al.  Analytical Method for Next-to-Leading-Order QCD Corrections to Double-Higgs Production. , 2018, Physical review letters.

[55]  Matthias Steinhauser,et al.  On the Higgs boson pair production at the LHC , 2013, 1305.7340.

[56]  F. Brown Multiple zeta values and periods of moduli spaces $\overline{\mathfrak {M}}_{0,n}$ , 2009 .

[57]  K. Melnikov,et al.  Fiducial cross sections for Higgs boson production in association with a jet at next-to-next-to-leading order in QCD , 2015, 1508.02684.

[58]  D. Florian,et al.  Two-loop virtual corrections to Higgs pair production , 2013, 1305.5206.

[59]  J. Henn Multiloop integrals in dimensional regularization made simple. , 2013, Physical review letters.

[60]  A. V. Smirnov,et al.  FIRE5: A C++ implementation of Feynman Integral REduction , 2014, Comput. Phys. Commun..

[61]  T. Neumann NLO Higgs+jet production at large transverse momenta including top quark mass effects , 2018, Journal of Physics Communications.

[62]  A. Goncharov,et al.  Multiple polylogarithms, cyclotomy and modular complexes , 2011, 1105.2076.

[63]  Benjamin Assel The space of vacua of 3d N=3$$ \mathcal{N}=3 $$ abelian theories , 2017, 1706.00793.

[64]  S. Weinzierl,et al.  Simplifying Differential Equations for Multiscale Feynman Integrals beyond Multiple Polylogarithms. , 2017, Physical review letters.

[65]  I. Hinchliffe,et al.  Higgs decay to τ+τ−A possible signature of intermediate mass Higgs bosons at high energy hadron colliders , 1988 .

[66]  Matthias Steinhauser,et al.  Double-Higgs boson production in the high-energy limit: planar master integrals , 2018, Journal of High Energy Physics.

[67]  R. Bonciani,et al.  Two-loop planar master integrals for Higgs → 3 partons with full heavy-quark mass dependence , 2016, 1609.06685.

[68]  Andreas Maier,et al.  Reconstruction of top-quark mass effects in Higgs pair production and other gluon-fusion processes , 2017, 1709.07799.

[69]  D. Rathlev,et al.  Differential Higgs boson pair production at next-to-next-to-leading order in QCD , 2013, Physical review letters.

[70]  S. Borowka,et al.  Higgs Boson Pair Production in Gluon Fusion at Next-to-Leading Order with Full Top-Quark Mass Dependence. , 2016, Physical review letters.

[71]  S. Borowka,et al.  Full top quark mass dependence in Higgs boson pair production at NLO , 2016 .

[72]  R. Contino,et al.  Effective field theory analysis of double Higgs boson production via gluon fusion , 2015 .