New Numerical Methods For Transient Modeling of Gas Pipeline Networks

[1]  A. Tikhonov,et al.  Equations of Mathematical Physics , 1964 .

[2]  Willem Hundsdorfer,et al.  Convergence properties of the Runge-Kutta-Chebyshev method , 1990 .

[3]  William G. Gray,et al.  One step integration methods with maximum stability regions , 1984 .

[4]  Jan G. Verwer,et al.  An Implementation of a Class of Stabilized Explicit Methods for the Time Integration of Parabolic Equations , 1980, TOMS.

[5]  P. Houwen Explicit Runge-Kutta formulas with increased stability boundaries , 1972 .

[6]  I. P. E. Kinnmark A principle for construction of one-step integration methods with maximum imaginary stability limits , 1987 .

[7]  P. Houwen,et al.  On the Internal Stability of Explicit, m‐Stage Runge‐Kutta Methods for Large m‐Values , 1979 .

[8]  A. G. Butkovskii,et al.  Green's Functions and Transfer Functions Handbook , 1982 .

[9]  Andrzej J. Osiadacz Osiadacz,et al.  Simulation and Analysis of Gas Networks , 1987 .

[10]  B. Sommeijer,et al.  On the economization of stabilized runge-kutta methods with applications to parabolic initial value problems : (preprint) , 1979 .

[11]  William G. Gray,et al.  Numerical methods for differential equations : fundamental concepts for scientific and engineering applications , 1992 .

[12]  Kjell Gustafsson,et al.  Control-theoretic techniques for stepsize selection in implicit Runge-Kutta methods , 1991, TOMS.

[13]  William G. Gray,et al.  One step integration methods of third-fourth order accuracy with large hyperbolic stability limits , 1984 .