Connection probabilities and RSW‐type bounds for the two‐dimensional FK Ising model

We prove Russo-Seymour-Welsh-type uniform bounds on crossing probabilities for the FK Ising (FK percolation with cluster weight q = 2) model at criticality, independent of the boundary conditions. Our proof relies mainly on Smirnov's fermionic observable for the FK Ising model [24], which allows us to get precise estimates on boundary connection probabilities. We stay in a discrete setting; in particular, we do not make use of any continuum limit, and our result can be used to derive directly several noteworthy properties—including some new ones—among which are the fact that there is no infinite cluster at criticality, tightness properties for the interfaces, and the existence of several critical exponents, in particular the half-plane, one-arm exponent. Such crossing bounds are also instrumental for important applications such as constructing the scaling limit of the Ising spin field [6] and deriving polynomial bounds for the mixing time of the Glauber dynamics at criticality [17]

[1]  Allan Sly,et al.  Critical Ising on the Square Lattice Mixes in Polynomial Time , 2010, 1001.1613.

[2]  Alexander M. Polyakov,et al.  Infinite conformal symmetry of critical fluctuations in two dimensions , 1984 .

[3]  H. Kramers,et al.  Statistics of the Two-Dimensional Ferromagnet. Part II , 1941 .

[4]  Wendelin Werner,et al.  One-Arm Exponent for Critical 2D Percolation , 2001 .

[5]  D. Welsh,et al.  Percolation probabilities on the square lattice , 1978 .

[6]  Wendelin Werner,et al.  CRITICAL EXPONENTS FOR TWO-DIMENSIONAL PERCOLATION , 2001 .

[7]  Gregory F. Lawler,et al.  Conformally Invariant Processes in the Plane , 2005 .

[8]  Wendelin Werner,et al.  Values of Brownian intersection exponents, II: Plane exponents , 2000, math/0003156.

[9]  C. Newman,et al.  Ising (conformal) fields and cluster area measures , 2008, Proceedings of the National Academy of Sciences.

[10]  A. Polyakov Conformal symmetry of critical fluctuations , 1970 .

[11]  S. Smirnov Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model , 2007, 0708.0039.

[12]  C. Newman,et al.  Two-Dimensional Critical Percolation: The Full Scaling Limit , 2006, math/0605035.

[13]  Almut Burchard,et al.  Holder Regularity and Dimension Bounds for Random Curves , 1998 .

[14]  SLEs as boundaries of clusters of Brownian loops , 2003, math/0308164.

[15]  H. Kesten Scaling relations for 2D-percolation , 1987 .

[16]  C. Fortuin,et al.  On the random-cluster model: I. Introduction and relation to other models , 1972 .

[17]  A. Sokal,et al.  Generalization of the Fortuin-Kasteleyn-Swendsen-Wang representation and Monte Carlo algorithm. , 1988, Physical review. D, Particles and fields.

[18]  R. Peierls On Ising's model of ferromagnetism , 1936, Mathematical Proceedings of the Cambridge Philosophical Society.

[19]  Percolation et modèle d'ising , 2009 .

[20]  A. Polyakov,et al.  Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory - Nucl. Phys. B241, 333 (1984) , 1984 .

[21]  Gregory F. Lawler,et al.  Random Walk: A Modern Introduction , 2010 .

[22]  G. Grimmett,et al.  Influence and sharp-threshold theorems for monotonic measures , 2005, math/0505057.

[23]  Stanislav Smirnov,et al.  Discrete complex analysis on isoradial graphs , 2008, 0810.2188.

[24]  Stanislav Smirnov,et al.  Towards conformal invariance of 2D lattice models , 2007, 0708.0032.

[25]  S. Smirnov,et al.  Random curves, scaling limits and Loewner evolutions , 2012, 1212.6215.

[26]  L. Russo A note on percolation , 1978 .

[27]  V. Beara The self-dual point of the two-dimensional random-cluster model is critical for q > 1 , 2011 .

[28]  A. Kemppainen On Random Planar Curves and Their Scaling Limits , 2009 .

[29]  Geoffrey Grimmett The Random-Cluster Model , 2002, math/0205237.

[30]  Wendelin Werner,et al.  Values of Brownian intersection exponents, I: Half-plane exponents , 1999 .

[31]  L. Onsager Crystal statistics. I. A two-dimensional model with an order-disorder transition , 1944 .

[32]  H. Duminil-Copin,et al.  The critical temperature of the Ising model on the square lattice, an easy way , 2010 .

[33]  S. Smirnov,et al.  Universality in the 2D Ising model and conformal invariance of fermionic observables , 2009, 0910.2045.