Connection probabilities and RSW‐type bounds for the two‐dimensional FK Ising model
暂无分享,去创建一个
Pierre Nolin | Hugo Duminil-Copin | H. Duminil-Copin | Clément Hongler | P. Nolin | Clément Hongler | C. Hongler
[1] Allan Sly,et al. Critical Ising on the Square Lattice Mixes in Polynomial Time , 2010, 1001.1613.
[2] Alexander M. Polyakov,et al. Infinite conformal symmetry of critical fluctuations in two dimensions , 1984 .
[3] H. Kramers,et al. Statistics of the Two-Dimensional Ferromagnet. Part II , 1941 .
[4] Wendelin Werner,et al. One-Arm Exponent for Critical 2D Percolation , 2001 .
[5] D. Welsh,et al. Percolation probabilities on the square lattice , 1978 .
[6] Wendelin Werner,et al. CRITICAL EXPONENTS FOR TWO-DIMENSIONAL PERCOLATION , 2001 .
[7] Gregory F. Lawler,et al. Conformally Invariant Processes in the Plane , 2005 .
[8] Wendelin Werner,et al. Values of Brownian intersection exponents, II: Plane exponents , 2000, math/0003156.
[9] C. Newman,et al. Ising (conformal) fields and cluster area measures , 2008, Proceedings of the National Academy of Sciences.
[10] A. Polyakov. Conformal symmetry of critical fluctuations , 1970 .
[11] S. Smirnov. Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model , 2007, 0708.0039.
[12] C. Newman,et al. Two-Dimensional Critical Percolation: The Full Scaling Limit , 2006, math/0605035.
[13] Almut Burchard,et al. Holder Regularity and Dimension Bounds for Random Curves , 1998 .
[14] SLEs as boundaries of clusters of Brownian loops , 2003, math/0308164.
[15] H. Kesten. Scaling relations for 2D-percolation , 1987 .
[16] C. Fortuin,et al. On the random-cluster model: I. Introduction and relation to other models , 1972 .
[17] A. Sokal,et al. Generalization of the Fortuin-Kasteleyn-Swendsen-Wang representation and Monte Carlo algorithm. , 1988, Physical review. D, Particles and fields.
[18] R. Peierls. On Ising's model of ferromagnetism , 1936, Mathematical Proceedings of the Cambridge Philosophical Society.
[19] Percolation et modèle d'ising , 2009 .
[20] A. Polyakov,et al. Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory - Nucl. Phys. B241, 333 (1984) , 1984 .
[21] Gregory F. Lawler,et al. Random Walk: A Modern Introduction , 2010 .
[22] G. Grimmett,et al. Influence and sharp-threshold theorems for monotonic measures , 2005, math/0505057.
[23] Stanislav Smirnov,et al. Discrete complex analysis on isoradial graphs , 2008, 0810.2188.
[24] Stanislav Smirnov,et al. Towards conformal invariance of 2D lattice models , 2007, 0708.0032.
[25] S. Smirnov,et al. Random curves, scaling limits and Loewner evolutions , 2012, 1212.6215.
[26] L. Russo. A note on percolation , 1978 .
[27] V. Beara. The self-dual point of the two-dimensional random-cluster model is critical for q > 1 , 2011 .
[28] A. Kemppainen. On Random Planar Curves and Their Scaling Limits , 2009 .
[29] Geoffrey Grimmett. The Random-Cluster Model , 2002, math/0205237.
[30] Wendelin Werner,et al. Values of Brownian intersection exponents, I: Half-plane exponents , 1999 .
[31] L. Onsager. Crystal statistics. I. A two-dimensional model with an order-disorder transition , 1944 .
[32] H. Duminil-Copin,et al. The critical temperature of the Ising model on the square lattice, an easy way , 2010 .
[33] S. Smirnov,et al. Universality in the 2D Ising model and conformal invariance of fermionic observables , 2009, 0910.2045.