Black titanium dioxide (TiO2) nanomaterials.

In the past few decades, there has been a wide research interest in titanium dioxide (TiO2) nanomaterials due to their applications in photocatalytic hydrogen generation and environmental pollution removal. Improving the optical absorption properties of TiO2 nanomaterials has been successfully demonstrated to enhance their photocatalytic activities, especially in the report of black TiO2 nanoparticles. The recent progress in the investigation of black TiO2 nanomaterials has been reviewed here, and special emphasis has been given on their fabrication methods along with their various chemical/physical properties and applications.

[1]  Xiaobo Chen,et al.  Enhancing microwave absorption of TiO_2 nanocrystals via hydrogenation , 2014 .

[2]  Xiaobo Chen,et al.  Titanium dioxide-based nanomaterials for photocatalytic fuel generations. , 2014, Chemical reviews.

[3]  Faqiang Li,et al.  A highly photoactive S, Cu‐codoped nano‐TiO2 photocatalyst: Synthesis and characterization for enhanced photocatalytic degradation of neutral red , 2014 .

[4]  Xiaobo Chen,et al.  Titanium dioxide nanomaterials: self-structural modifications. , 2014, Chemical reviews.

[5]  Yichun Liu,et al.  Photoelectrochemical Water Splitting with Rutile TiO2 Nanowires Array: Synergistic Effect of Hydrogen Treatment and Surface Modification with Anatase Nanoparticles , 2014 .

[6]  S. Pillai,et al.  Evaluating the Mechanism of Visible Light Activity for N,F-TiO2 Using Photoelectrochemistry , 2014 .

[7]  Xiaogang Zhang,et al.  Synthesis of hydrogenated TiO2–reduced-graphene oxide nanocomposites and their application in high rate lithium ion batteries , 2014 .

[8]  Chongyin Yang,et al.  Black TiO2 nanotube arrays for high-efficiency photoelectrochemical water-splitting , 2014 .

[9]  M. Hartmann,et al.  Black TiO2 nanotubes: cocatalyst-free open-circuit hydrogen generation. , 2014, Nano letters.

[10]  M. Meng,et al.  H2 spillover enhanced hydrogenation capability of TiO2 used for photocatalytic splitting of water: a traditional phenomenon for new applications. , 2014, Chemical communications.

[11]  Yi Cui,et al.  Sulfur cathodes with hydrogen reduced titanium dioxide inverse opal structure. , 2014, ACS Nano.

[12]  V. Battaglia,et al.  Amorphous carbon-coated TiO2 nanocrystals for improved lithium-ion battery and photocatalytic performance , 2014 .

[13]  E. Xie,et al.  Preparation of black TiO2 by hydrogen plasma assisted chemical vapor deposition and its photocatalytic activity , 2014 .

[14]  Chenghua Sun,et al.  Hydrogenation Synthesis of Blue TiO2 for High-Performance Lithium-Ion Batteries , 2014 .

[15]  Xiaobo Chen,et al.  Vacuum-treated titanium dioxide nanocrystals: Optical properties, surface disorder, oxygen vacancy, and photocatalytic activities , 2014 .

[16]  Chenghua Sun,et al.  Blue hydrogenated lithium titanate as a high-rate anode material for lithium-ion batteries , 2014 .

[17]  C. Xie,et al.  Catalytic oxidation of formaldehyde on surface of HTiO2/HCTiO2 without light illumination at room temperature , 2014 .

[18]  Xiaobo Chen,et al.  Lithium‐Ion Battery Performance of (001)‐Faceted TiO2 Nanosheets vs. Spherical TiO2 Nanoparticles , 2014 .

[19]  He Zhou,et al.  Electrochemically Self-Doped TiO2 Nanotube Arrays for Supercapacitors , 2014 .

[20]  Haihui Wang,et al.  High performance hydrogenated TiO2 nanorod arrays as a photoelectrochemical sensor for organic compounds under visible light , 2014 .

[21]  Ying Li,et al.  Understanding the Reaction Mechanism of Photocatalytic Reduction of CO2 with H2O on TiO2-Based Photocatalysts: A Review , 2014 .

[22]  S. J. Hashemifar,et al.  Ab-initio study of hydrogen doping and oxygen vacancy at anatase TiO2 surface , 2014 .

[23]  S. Bordiga,et al.  Defect Sites in H2-Reduced TiO2 Convert Ethylene to High Density Polyethylene without Activator , 2014 .

[24]  Jingxia Qiu,et al.  Hydrogenation of nanostructured semiconductors for energy conversion and storage , 2014 .

[25]  Chongyin Yang,et al.  Effective nonmetal incorporation in black titania with enhanced solar energy utilization , 2014 .

[26]  Zaicheng Sun,et al.  Reduced TiO2 rutile nanorods with well-defined facets and their visible-light photocatalytic activity. , 2014, Chemical communications.

[27]  Yongping Zheng,et al.  O2 Adsorption and Dissociation on A Hydrogenated Anatase (101) Surface , 2014 .

[28]  A. Nakajima,et al.  Defective black TiOTiO₂ synthesized via anodization for visible-light photocatalysis. , 2014, ACS applied materials & interfaces.

[29]  Wei Wang,et al.  Hydrogenation temperature related inner structures and visible-light-driven photocatalysis of N–F co-doped TiO2 nanosheets , 2014 .

[30]  Yi‐Jun Xu,et al.  Efficient thermal- and photocatalyst of Pd nanoparticles on TiO₂ achieved by an oxygen vacancies promoted synthesis strategy. , 2014, ACS applied materials & interfaces.

[31]  P. Smirniotis,et al.  Flame Aerosol Synthesized Cr Incorporated TiO2 for Visible Light Photodegradation of Gas Phase Acetonitrile , 2014 .

[32]  B. Pan,et al.  Electrochemical doping of anatase TiO2 in organic electrolytes for high-performance supercapacitors and photocatalysts , 2014 .

[33]  Haiqiang Lu,et al.  Safe and facile hydrogenation of commercial Degussa P25 at room temperature with enhanced photocatalytic activity , 2014 .

[34]  Mohammad Mansoob Khan,et al.  Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies , 2014 .

[35]  Ning Wang,et al.  Hydrogenated TiO2 film for enhancing photovoltaic properties of solar cells and self-sensitized effect , 2013 .

[36]  Xiaobo Chen,et al.  Hydrogenated TiO2 Nanocrystals: A Novel Microwave Absorbing Material , 2013, Advanced materials.

[37]  Xiaoming Xie,et al.  H‐Doped Black Titania with Very High Solar Absorption and Excellent Photocatalysis Enhanced by Localized Surface Plasmon Resonance , 2013 .

[38]  Alexander J. Cowan,et al.  Efficient Suppression of Electron–Hole Recombination in Oxygen-Deficient Hydrogen-Treated TiO2 Nanowires for Photoelectrochemical Water Splitting , 2013, The journal of physical chemistry. C, Nanomaterials and interfaces.

[39]  Chongyin Yang,et al.  Core-shell nanostructured "black" rutile titania as excellent catalyst for hydrogen production enhanced by sulfur doping. , 2013, Journal of the American Chemical Society.

[40]  Yong Yan,et al.  Understanding the fast lithium storage performance of hydrogenated TiO2 nanoparticles , 2013 .

[41]  Wei Zhang,et al.  A Facile Method to Improve the Photocatalytic and Lithium‐Ion Rechargeable Battery Performance of TiO2 Nanocrystals , 2013 .

[42]  B. Wood,et al.  Photoelectrochemical characterization of hydrogenated TiO2 nanotubes as photoanodes for sensing applications. , 2013, ACS applied materials & interfaces.

[43]  Wei Zhang,et al.  Built-in electric field-assisted surface-amorphized nanocrystals for high-rate lithium-ion battery. , 2013, Nano letters.

[44]  Xiaomei Yu,et al.  Highly Enhanced Photoactivity of Anatase TiO2 Nanocrystals by Controlled Hydrogenation-Induced Surface Defects , 2013 .

[45]  Chongyin Yang,et al.  Gray TiO2 nanowires synthesized by aluminum-mediated reduction and their excellent photocatalytic activity for water cleaning. , 2013, Chemistry.

[46]  Chongyin Yang,et al.  Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania , 2013 .

[47]  X. Fang,et al.  Electrochemically hydrogenated TiO2 nanotubes with improved photoelectrochemical water splitting performance , 2013, Nanoscale Research Letters.

[48]  Peng Wang,et al.  Electrochemical reduction induced self-doping of Ti3+ for efficient water splitting performance on TiO2 based photoelectrodes. , 2013, Physical chemistry chemical physics : PCCP.

[49]  B. Scrosati,et al.  Black anatase titania enabling ultra high cycling rates for rechargeable lithium batteries , 2013 .

[50]  Huan Lin,et al.  Facile synthesis of defect-mediated TiO2−x with enhanced visible light photocatalytic activity , 2013 .

[51]  D. Shen,et al.  Hydrogenation and disorder in engineered black TiO2. , 2013, Physical review letters.

[52]  Chongyin Yang,et al.  Black brookite titania with high solar absorption and excellent photocatalytic performance , 2013 .

[53]  Zhonghua Zhang,et al.  Mesoporous hydrogenated TiO2 microspheres for high rate capability lithium ion batteries , 2013 .

[54]  B. Liu,et al.  Large-scale synthesis of transition-metal-doped TiO2 nanowires with controllable overpotential. , 2013, Journal of the American Chemical Society.

[55]  Hyunwoong Park,et al.  Surface modification of TiO2 photocatalyst for environmental applications , 2013 .

[56]  Dionysios D. Dionysiou,et al.  Enhanced visible light photocatalytic activity of CN-codoped TiO2 films for the degradation of microcystin-LR , 2013 .

[57]  Jianjun Yang,et al.  Molybdenum and Nitrogen Co-Doped Titanium Dioxide Nanotube Arrays with Enhanced Visible Light Photocatalytic Activity , 2013, 1401.0582.

[58]  Yi‐Jun Xu,et al.  Fast and spontaneous reduction of gold ions over oxygen-vacancy-rich TiO2: A novel strategy to design defect-based composite photocatalyst , 2013 .

[59]  L. Forró,et al.  Electrical property measurements of Cr-N codoped TiO2 epitaxial thin films grown by pulsed laser deposition , 2013 .

[60]  Tim Leshuk,et al.  Hydrogenation processing of TiO2 nanoparticles , 2013 .

[61]  M. Lin,et al.  Quantum chemical elucidation of the mechanism for hydrogenation of TiO2 anatase crystals. , 2013, The Journal of chemical physics.

[62]  Jinhua Ye,et al.  Reduced TiO2 nanotube arrays for photoelectrochemical water splitting , 2013 .

[63]  S. Yin,et al.  Photocatalytic Properties of Nd and C Codoped TiO2 with the Whole Range of Visible Light Absorption , 2013 .

[64]  B. Yi,et al.  Supported noble metals on hydrogen-treated TiO2 nanotube arrays as highly ordered electrodes for fuel cells. , 2013, ChemSusChem.

[65]  Jinghua Guo,et al.  Properties of Disorder-Engineered Black Titanium Dioxide Nanoparticles through Hydrogenation , 2013, Scientific Reports.

[66]  Lauren R. Grabstanowicz,et al.  Facile oxidative conversion of TiH2 to high-concentration Ti(3+)-self-doped rutile TiO2 with visible-light photoactivity. , 2013, Inorganic chemistry.

[67]  Tim Leshuk,et al.  Photocatalytic activity of hydrogenated TiO2. , 2013, ACS applied materials & interfaces.

[68]  D. Dionysiou,et al.  Anion-Doped TiO2 Nanocatalysts for Water Purification under Visible Light , 2013 .

[69]  Fan Zuo,et al.  Facile synthesis of thermal- and photostable titania with paramagnetic oxygen vacancies for visible-light photocatalysis. , 2013, Chemistry.

[70]  Ying Dai,et al.  Green synthetic approach for Ti3+ self-doped TiO(2-x) nanoparticles with efficient visible light photocatalytic activity. , 2013, Nanoscale.

[71]  Xiaobo Chen,et al.  Revealing the structural properties of hydrogenated black TiO2 nanocrystals , 2013 .

[72]  Guozhong Cao,et al.  Hydrogenated Li4Ti5O12 Nanowire Arrays for High Rate Lithium Ion Batteries , 2012, Advanced materials.

[73]  Y. Hu A highly efficient photocatalyst--hydrogenated black TiO2 for the photocatalytic splitting of water. , 2012, Angewandte Chemie.

[74]  S. Shah,et al.  Improvement of (004) texturing by slow growth of Nd doped TiO2 films , 2012 .

[75]  M. Shultz,et al.  Differing photo-oxidation mechanisms: electron transfer in TiO2 versus iron-doped TiO2. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[76]  A. Selloni,et al.  Hydrogen interaction with the anatase TiO2(101) surface. , 2012, Physical chemistry chemical physics : PCCP.

[77]  Robert Kostecki,et al.  Nanomaterials for renewable energy production and storage. , 2012, Chemical Society reviews.

[78]  Haitao Huang,et al.  Hydrogenated TiO2 Nanotube Arrays as High‐Rate Anodes for Lithium‐Ion Microbatteries , 2012 .

[79]  Wei Wang,et al.  A new sight on hydrogenation of F and N-F doped {0 0 1} facets dominated anatase TiO2 for efficient visible light photocatalyst , 2012 .

[80]  Dong‐sheng Li,et al.  Enhanced field emission from hydrogenated TiO2 nanotube arrays , 2012, Nanotechnology.

[81]  Yan-cheng Wang,et al.  Characterization of Oxygen Vacancy Associates within Hydrogenated TiO2: A Positron Annihilation Study , 2012 .

[82]  J. Buha Solar absorption and microstructure of C-doped and H-co-doped TiO2 thin films , 2012 .

[83]  Haiwu Zheng,et al.  Enhanced photocatalytic activity of (Zn, N)-codoped TiO2 nanoparticles , 2012 .

[84]  M. Marelli,et al.  H₂ production by renewables photoreforming on Pt-Au/TiO₂ catalysts activated by reduction. , 2012, ChemSusChem.

[85]  L. Chunhua,et al.  Hydrogenation of TiO2 nanosheets with exposed {001} facets for enhanced photocatalytc activity , 2012 .

[86]  S. Rangan,et al.  Increasing photocurrents in dye sensitized solar cells with tantalum-doped titanium oxide photoanodes obtained by laser ablation. , 2012, ACS applied materials & interfaces.

[87]  Z. Ji,et al.  Mo + N Codoped TiO2 sheets with dominant {001} facets for enhancing visible-light photocatalytic activity , 2012 .

[88]  Ying Li,et al.  Copper and iodine co-modified TiO2 nanoparticles for improved activity of CO2 photoreduction with water vapor , 2012 .

[89]  J. Gole,et al.  The presence of Ti(II) centers in doped nanoscale TiO2 and TiO2−xNx , 2012 .

[90]  James M. Mayer,et al.  Titanium and Zinc Oxide Nanoparticles Are Proton-Coupled Electron Transfer Agents , 2012, Science.

[91]  Satoshi Tominaka Topotactic reduction yielding black titanium oxide nanostructures as metallic electronic conductors. , 2012, Inorganic chemistry.

[92]  M. El-Sayed,et al.  Some recent developments in photoelectrochemical water splitting using nanostructured TiO2: a short review , 2012, Theoretical Chemistry Accounts.

[93]  Jingbo Li,et al.  Effect of hydrogen passivation on the electronic structure of ionic semiconductor nanostructures , 2012 .

[94]  Xiaoyan Qin,et al.  Hydrogenated titania: synergy of surface modification and morphology improvement for enhanced photocatalytic activity. , 2012, Chemical communications.

[95]  Chunhua Lu,et al.  Enhanced visible-light photoactivity of {001} facets dominated TiO2 nanosheets with even distributed bulk oxygen vacancy and Ti3+ , 2012 .

[96]  M. Marelli,et al.  Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. , 2012, Journal of the American Chemical Society.

[97]  Teng Zhai,et al.  Hydrogenated TiO2 nanotube arrays for supercapacitors. , 2012, Nano letters.

[98]  Shui-Tong Lee,et al.  Porous TiO2 Photonic Band Gap Materials by Anodization , 2012 .

[99]  Nathan T. Hahn,et al.  Enhancing visible light photo-oxidation of water with TiO2 nanowire arrays via cotreatment with H2 and NH3: synergistic effects between Ti3+ and N. , 2012, Journal of the American Chemical Society.

[100]  Ji‐Yong Shin,et al.  Oxygen-Deficient TiO2−δ Nanoparticles via Hydrogen Reduction for High Rate Capability Lithium Batteries , 2012 .

[101]  Allen J. Bard,et al.  Visible light driven photoelectrochemical water oxidation on nitrogen-modified TiO2 nanowires. , 2012, Nano letters.

[102]  M. Marelli,et al.  Bimetallic Au–Pt/TiO2 photocatalysts active under UV-A and simulated sunlight for H2 production from ethanol , 2012 .

[103]  N. Umezawa,et al.  Undoped visible-light-sensitive titania photocatalyst , 2012, Journal of Materials Science.

[104]  W. Marsden I and J , 2012 .

[105]  Junling Lu,et al.  Effect of Reactor Materials on the Properties of Titanium Oxide Nanotubes , 2012 .

[106]  Xiao Hua Yang,et al.  Hydrogen Incorporation and Storage in Well-Defined Nanocrystals of Anatase Titanium Dioxide , 2011 .

[107]  Ying Dai,et al.  Effective increasing of optical absorption and energy conversion efficiency of anatase TiO2 nanocrystals by hydrogenation. , 2011, Physical chemistry chemical physics : PCCP.

[108]  Xiujian Zhao,et al.  Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency. , 2011, Journal of the American Chemical Society.

[109]  Y. Matsushita,et al.  Synthesis of nanostructured reduced titanium oxide: crystal structure transformation maintaining nanomorphology. , 2011, Angewandte Chemie.

[110]  Yichuan Ling,et al.  Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. , 2011, Nano letters.

[111]  Hamid Garmestani,et al.  Electrochemical Fabrication of Strontium-Doped TiO2 Nanotube Array Electrodes and Investigation of Their Photoelectrochemical Properties , 2011 .

[112]  Huajian Gao,et al.  Effects of H-, N-, and (H, N)-Doping on the Photocatalytic Activity of TiO2 , 2011 .

[113]  Xiaobo Chen,et al.  Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals , 2011, Science.

[114]  Xiaobo Chen,et al.  Semiconductor-based photocatalytic hydrogen generation. , 2010, Chemical reviews.

[115]  A. Manivannan,et al.  Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts. , 2009, Journal of the American Chemical Society.

[116]  J. Chao,et al.  Effect of calcination temperature on the structure of a Pt/TiO2 (B) nanofiber and its photocatalytic activity in generating H2. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[117]  S. Pennycook,et al.  Defect-mediated ferromagnetism in insulating Co-doped anatase TiO2 thin films , 2008 .

[118]  Jin Zou,et al.  Anatase TiO2 single crystals with a large percentage of reactive facets , 2008, Nature.

[119]  Xiaobo Chen,et al.  The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials. , 2008, Journal of the American Chemical Society.

[120]  Xiaobo Chen,et al.  Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. , 2007, Chemical reviews.

[121]  A. Selloni,et al.  Chemistry of and on TiO2-anatase surfaces by DFT calculations: a partial review , 2007 .

[122]  J. Chao,et al.  A highly active bi-crystalline photocatalyst consisting of TiO2 (B) nanotube and anatase particle for producing H2 gas from neat ethanol , 2007 .

[123]  Jianwei Shi,et al.  Preparations and photocatalytic hydrogen evolution of N-doped TiO2 from urea and titanium tetrachloride , 2006 .

[124]  G. Pacchioni,et al.  Theory of Carbon Doping of Titanium Dioxide , 2005 .

[125]  M. Payne,et al.  New insights into the origin of visible light photocatalytic activity of nitrogen-doped and oxygen-deficient anatase TiO2. , 2005, The journal of physical chemistry. B.

[126]  Toshinori Mori,et al.  Preparation of visible-light-responsive TiO2-xNx photocatalyst by a sol-gel method: analysis of the active center on TiO2 that reacts with NH3. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[127]  Annabella Selloni,et al.  Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations. , 2005, The journal of physical chemistry. B.

[128]  N. Ohashi,et al.  Visible-Light-Driven N−F−Codoped TiO2 Photocatalysts. 2. Optical Characterization, Photocatalysis, and Potential Application to Air Purification , 2005 .

[129]  M. El-Sayed,et al.  Chemistry and properties of nanocrystals of different shapes. , 2005, Chemical reviews.

[130]  Hajime Haneda,et al.  Visible-light-driven photocatalysis on fluorine-doped TiO2 powders by the creation of surface oxygen vacancies , 2005 .

[131]  James L. Gole,et al.  Formation of Oxynitride as the Photocatalytic Enhancing Site in Nitrogen‐Doped Titania Nanocatalysts: Comparison to a Commercial Nanopowder , 2005 .

[132]  Hajime Haneda,et al.  Fluorine-doped TiO2 powders prepared by spray pyrolysis and their improved photocatalytic activity for decomposition of gas-phase acetaldehyde , 2005 .

[133]  Chih‐Hao Lee,et al.  Photocatalytic Generation of H2 Gas from Neat Ethanol over Pt/TiO2 Nanotube Catalysts , 2004 .

[134]  C. Burda,et al.  Photoelectron Spectroscopic Investigation of Nitrogen-Doped Titania Nanoparticles , 2004 .

[135]  G. Pacchioni,et al.  Origin of the different photoactivity of N-doped anatase and rutile TiO2 , 2004 .

[136]  K. Domen,et al.  Metal ion and N co-doped TiO_2 as a visible-light photocatalyst , 2004 .

[137]  K. Asai,et al.  Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light , 2004 .

[138]  Yutaka Murakami,et al.  Defects in Anatase TiO2 Single Crystal Controlled by Heat Treatments , 2004 .

[139]  M. Yoshikawa,et al.  Fabrication and characterization of C-doped anatase TiO2 photocatalysts , 2004 .

[140]  Tsuyoshi Takata,et al.  Photocatalytic Activity Enhancing for Titanium Dioxide by Co-doping with Bromine and Chlorine , 2004 .

[141]  Claes-Göran Granqvist,et al.  Photoelectrochemical study of sputtered nitrogen-doped titanium dioxide thin films in aqueous electrolyte , 2004 .

[142]  D. Doren,et al.  Band gap tailoring of Nd3+-doped TiO2 nanoparticles , 2003 .

[143]  J. Gole,et al.  Enhanced Nitrogen Doping in TiO2 Nanoparticles , 2003 .

[144]  Julius M. Mwabora,et al.  Photoelectrochemical and Optical Properties of Nitrogen Doped Titanium Dioxide Films Prepared by Reactive DC Magnetron Sputtering , 2003 .

[145]  Yuka Watanabe,et al.  Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNx Powders , 2003 .

[146]  M. Anpo,et al.  The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation , 2003 .

[147]  K. Asai,et al.  Sulfur-doping of rutile-titanium dioxide by ion implantation: Photocurrent spectroscopy and first-principles band calculation studies , 2003 .

[148]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .

[149]  X. Bao,et al.  The enhancement of TiO2 photocatalytic activity by hydrogen thermal treatment. , 2003, Chemosphere.

[150]  W. Ingler,et al.  Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2 , 2002, Science.

[151]  Keisuke Asai,et al.  Band gap narrowing of titanium dioxide by sulfur doping , 2002 .

[152]  T. Hirao,et al.  Surface hydroxyl formation on vacuum-annealed TiO2(110) , 2001 .

[153]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[154]  Yuichi Ichihashi,et al.  The design and development of second-generation titanium oxide photocatalysts able to operate under visible light irradiation by applying a metal ion-implantation method , 2001 .

[155]  M. Anpo,et al.  Design and development of second-generation titanium oxide photocatalysts to better our environment—approaches in realizing the use of visible light , 2001 .

[156]  M. Anpo Utilization of TiO2 photocatalysts in green chemistry , 2000 .

[157]  Masakazu Anpo,et al.  Use of visible light. Second-generation titanium oxide photocatalysts prepared by the application of an advanced metal ion-implantation method , 2000 .

[158]  James A. Anderson,et al.  Determination of the nature and reactivity of copper sites in Cu–TiO2 catalysts , 2000 .

[159]  D. Bahnemann,et al.  A novel preparation of iron-doped TiO2 nanoparticles with enhanced photocatalytic activity , 2000 .

[160]  S. Cai,et al.  Preparation, characterization and photoelectrochemical behaviors of Fe(III)-doped TiO2 nanoparticles , 1999 .

[161]  S. Cai,et al.  The photoelectrochemistry of transition metal-ion-doped TiO2 nanocrystalline electrodes and higher solar cell conversion efficiency based on Zn2+-doped TiO2 electrode , 1999 .

[162]  H. Yamashita,et al.  Characterization of metal ion-implanted titanium oxide photocatalysts operating under visible light irradiation. , 1999, Journal of synchrotron radiation.

[163]  H. Haerudin,et al.  Surface stoichiometry of ‘titanium suboxide’ , 1998 .

[164]  Michael R. Hoffmann,et al.  Iron(III)-doped Q-sized TiO2 coatings in a fiber-optic cable photochemical reactor , 1997 .

[165]  M. Barteau,et al.  Isothermal Reduction Kinetics of Titanium Dioxide-Based Materials , 1997 .

[166]  Yagi,et al.  Electronic conduction above 4 K of slightly reduced oxygen-deficient rutile TiO2-x. , 1996, Physical review. B, Condensed matter.

[167]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[168]  S. Martin,et al.  Environmental Applications of Semiconductor Photocatalysis , 1995 .

[169]  Wonyong Choi,et al.  The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics , 1994 .

[170]  S. Martin,et al.  Photochemical Mechanism of Size-Quantized Vanadium-Doped TiO2 Particles , 1994 .

[171]  Wonyong Choi,et al.  EINFLUSSE VON DOTIERUNGS-METALL-IONEN AUF DIE PHOTOKATALYTISCHE REAKTIVITAT VON TIO2-QUANTENTEILCHEN , 1994 .

[172]  Yagi,et al.  Electrical conductivity below 3 K of slightly reduced oxygen-deficient rutile TiO2-x. , 1994, Physical review. B, Condensed matter.

[173]  D. Bonnell,et al.  On the use of ion scattering to examine the role of hydrogen in the reduction of TiO_2 , 1993 .

[174]  M. M. Khader,et al.  Mechanism of reduction of rutile with hydrogen , 1993 .

[175]  D. Bonnell,et al.  Local Structure of Defects on Hydrogen‐ and Vacuum‐Reduced TiO2 Surfaces , 1993 .

[176]  P. Salvador,et al.  Catalytic role of lattice defects in the photoassisted oxidation of water at (001) n-titanium(IV) oxide rutile , 1992 .

[177]  B. L. Maschhoff,et al.  Interaction of water, oxygen, and hydrogen with TiO2(110) surfaces having different defect densities , 1992 .

[178]  D. W. Johnson,et al.  Controlled suppression and enhancement of the photoactivity of titanium dioxide (rutile) pigment , 1987 .

[179]  T. Sham,et al.  X-ray photoelectron spectroscopy (XPS) studies of hydrogen reduced rutile (TiO2-x) surfaces , 1982 .

[180]  Richard L. Kurtz,et al.  Surface electronic structure of Ti O 2 : Atomic geometry, ligand coordination, and the effect of adsorbed hydrogen , 1981 .

[181]  Michael Grätzel,et al.  Photochemical cleavage of water by photocatalysis , 1981, Nature.

[182]  R. Schumacher,et al.  The Influence of Preparation on Semiconducting Rutile ( TiO2 ) , 1980 .

[183]  G. Somorjai,et al.  Electron spectroscopy studies of the chemisorption of O2, H2 and H2O on the TiO2(100) surfaces with varied stoichiometry: Evidence for the photogeneration of Ti+3 and for its importance in chemisorption , 1978 .

[184]  A. Nozik,et al.  Photoelectrolysis of water using semiconducting TiO2 crystals , 1975, Nature.

[185]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[186]  W. Hosler,et al.  Multiple-Band Conduction in n-Type Rutile (TiO2) , 1965 .

[187]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[188]  D. C. Cronemeyer Infrared Absorption of Reduced Rutile Ti O 2 Single Crystals , 1959 .

[189]  D. C. Cronemeyer Electrical and Optical Properties of Rutile Single Crystals , 1952 .

[190]  D. C. Cronemeyer,et al.  The Optical Absorption and Photoconductivity of Rutile , 1951 .

[191]  R. G. Breckenridge,et al.  Electrical properties of titanium dioxide semiconductors , 1950 .