THE FORMATION OF PLUTO'S LOW-MASS SATELLITES

Motivated by the New Horizons mission, we consider how Pluto's small satellites—currently Styx, Nix, Kerberos, and Hydra—grow in debris from the giant impact that forms the Pluto-Charon binary. After the impact, Pluto and Charon accrete some of the debris and eject the rest from the binary orbit. During the ejection, high-velocity collisions among debris particles produce a collisional cascade, leading to the ejection of some debris from the system and enabling the remaining debris particles to find stable orbits around the binary. Our numerical simulations of coagulation and migration show that collisional evolution within a ring or a disk of debris leads to a few small satellites orbiting Pluto-Charon. These simulations are the first to demonstrate migration-induced mergers within a particle disk. The final satellite masses correlate with the initial disk mass. More massive disks tend to produce fewer satellites. For the current properties of the satellites, our results strongly favor initial debris masses of 3-10 × 1019 g and current satellite albedos A ≈ 0.4-1. We also predict an ensemble of smaller satellites, R 1-3 km, and very small particles, R ≈ 1-100 cm and optical depth τ 10–10. These objects should have semimajor axes outside the current orbit of Hydra.

[1]  Richard P. Binzel,et al.  A new determination of radii and limb parameters for Pluto and Charon from mutual event lightcurves , 1994 .

[2]  Renu Malhotra,et al.  The origin of Pluto's peculiar orbit , 1995, Nature.

[3]  S. Kenyon,et al.  A NEW HYBRID N-BODY-COAGULATION CODE FOR THE FORMATION OF GAS GIANT PLANETS , 2010, 1012.0574.

[4]  Conglomeration of Kilometer-sized Planetesimals , 2013, 1303.3888.

[5]  Sarah T. Stewart,et al.  COLLISIONS BETWEEN GRAVITY-DOMINATED BODIES. I. OUTCOME REGIMES AND SCALING LAWS , 2011, 1106.6084.

[6]  M. W. Buie,et al.  A giant impact origin for Pluto's small moons and satellite multiplicity in the Kuiper belt , 2006, Nature.

[7]  D. Davis,et al.  Accretional Evolution of a Planetesimal Swarm , 1997 .

[8]  Robert A. Marcus,et al.  THE FORMATION OF THE COLLISIONAL FAMILY AROUND THE DWARF PLANET HAUMEA , 2010, 1003.5822.

[9]  Harold F. Levison,et al.  On the Character and Consequences of Large Impacts in the Late Stage of Terrestrial Planet Formation , 1999 .

[10]  Richard J. Greenberg,et al.  From icy planetesimals to outer planets and comets , 1984 .

[11]  J. Burns,et al.  Radiation forces on small particles in the solar system , 1979 .

[12]  P. Tanga,et al.  Asteroid rotation and shapes from numerical simulations of gravitational re-accumulation , 2009 .

[13]  Daniel D. Durda,et al.  Collision Rates in the Present-Day Kuiper Belt and Centaur Regions: Applications to Surface Activation and Modification on Comets, Kuiper Belt Objects, Centaurs, and Pluto–Charon , 1999, astro-ph/9912400.

[14]  M. Wyatt,et al.  Evolution of Debris Disks , 2008 .

[15]  Formation of terrestrial planets in a dissipating gas disk , 2003 .

[16]  S. Weidenschilling The distribution of mass in the planetary system and solar nebula , 1977 .

[17]  S. Kenyon,et al.  VARIATIONS ON DEBRIS DISKS. II. ICY PLANET FORMATION AS A FUNCTION OF THE BULK PROPERTIES AND INITIAL SIZES OF PLANETESIMALS , 2009, 0911.4129.

[18]  S. Peale Origin and evolution of the natural satellites , 1999 .

[19]  J. Colwell,et al.  Accretion in the Edgeworth-Kuiper Belt: Forming 100-1000 KM Radius Bodies at 30 AU and Beyond. , 1997 .

[20]  John E. Chambers,et al.  Making the Terrestrial Planets: N-Body Integrations of Planetary Embryos in Three Dimensions , 1998 .

[21]  S. Stern,et al.  On the number of planets in the outer solar system: Evidence of a substantial population of 1000-km bodies , 1991 .

[22]  Collisional Cascades in Planetesimal Disks. I. Stellar Flybys , 2001, astro-ph/0111384.

[23]  Ignacio Mosqueira,et al.  Formation of the regular satellites of giant planets in an extended gaseous nebula I: subnebula model and accretion of satellites , 2003 .

[24]  Terry D. Oswalt,et al.  Planets, Stars and Stellar Systems , 2013 .

[25]  H. Levato,et al.  Charon's size and an upper limit on its atmosphere from a stellar occultation , 2006, Nature.

[26]  D. Williams,et al.  Size Distribution of Collisionally Evolved Asteroidal Populations: Analytical Solution for Self-Similar Collision Cascades , 1994 .

[27]  Á. Süli,et al.  Detailed survey of the phase space around Nix and Hydra , 2009 .

[28]  E. Kokubo,et al.  ON RUNAWAY GROWTH OF PLANETESIMALS , 1996 .

[29]  S. Kenyon,et al.  Variations on Debris Disks: Icy Planet Formation at 30-150 AU for 1-3 M☉ Main-Sequence Stars , 2008, 0807.1134.

[30]  J. Luu,et al.  Accretion in the Early Kuiper Belt. I. Coagulation and Velocity Evolution , 1998, astro-ph/9804185.

[31]  W. McKinnon,et al.  On the origin of the Pluto-Charon binary , 1989 .

[32]  R. Cionco,et al.  Orbital migrations in planetesimal discs: N-body simulations and the resonant dynamical friction , 2002 .

[33]  Othon Cabo Winter,et al.  Exploring S-type orbits in the Pluto–Charon binary system , 2009 .

[34]  S. Charnoz,et al.  The recent formation of Saturn's moonlets from viscous spreading of the main rings , 2010, Nature.

[35]  Y. Nakagawa,et al.  A Planetesimal Accretion Zone in a Circumbinary Disk , 2003 .

[36]  S. A. Stern Ejecta exchange and satellite color evolution in the Pluto system, with implications for KBOs and asteroids with satellites , 2009 .

[37]  Scott J. Kenyon,et al.  Accretion in the Early Kuiper Belt II. Fragmentation , 1999 .

[38]  J. Chambers Making More Terrestrial Planets , 2001 .

[39]  A. Morbidelli,et al.  Dynamical capture in the Pluto–Charon system , 2012, 1210.0876.

[40]  D. Lin,et al.  Dynamical Shake-up of Planetary Systems. I. Embryo Trapping and Induced Collisions by the Sweeping Secular Resonance and Embryo-Disk Tidal Interaction , 2005 .

[41]  C. Dominik,et al.  Age Dependence of the Vega Phenomenon: Theory , 2003, astro-ph/0308364.

[42]  Rubble-Pile Reshaping Reproduces Overall Asteroid Shapes , 2009 .

[43]  S. Lubow,et al.  Tidal truncation of circumplanetary discs , 2010, 1012.4102.

[44]  Orbital Evolution of Planets Embedded in a Planetesimal Disk , 1999, astro-ph/9902370.

[45]  R. Canup,et al.  A Giant Impact Origin of Pluto-Charon , 2005, Science.

[46]  I. Mosqueira,et al.  A Gas-poor Planetesimal Capture Model for the Formation of Giant Planet Satellite Systems , 2005, astro-ph/0504649.

[47]  A. Youdin ON THE FORMATION OF PLANETESIMALS VIA SECULAR GRAVITATIONAL INSTABILITIES WITH TURBULENT STIRRING , 2011, 1102.4620.

[48]  John E. Chambers,et al.  Late-stage planetary accretion including hit-and-run collisions and fragmentation , 2013 .

[49]  COLLISIONAL CASCADES IN PLANETESIMAL DISKS. II. EMBEDDED PLANETS , 2003, astro-ph/0309540.

[50]  J. Pringle The properties of external accretion discs , 1991 .

[51]  S. Kenyon,et al.  MIGRATION OF SMALL MOONS IN SATURN's RINGS , 2013, 1301.3211.

[52]  D. Lin,et al.  Orbital Migration of Neptune and Orbital Distribution of Trans-Neptunian Objects , 2000 .

[53]  Pascal Rosenblatt,et al.  On the formation of the martian moons from a circum-martian accretion disk , 2012 .

[54]  K. Ohtsuki Evolution of random velocities of planetesimals in the course of accretion , 1992 .

[55]  E. Chiang,et al.  High albedos of low inclination Classical Kuiper belt objects , 2008, 0812.4290.

[56]  T. Heppenheimer Outline of a theory of planet formation in binary systems , 1974 .

[57]  S. Ida,et al.  N-BODY SIMULATIONS OF SATELLITE FORMATION AROUND GIANT PLANETS: ORIGIN OF ORBITAL CONFIGURATION OF THE GALILEAN MOONS , 2012, 1205.0301.

[58]  M. W. Buie,et al.  Orbits and Photometry of Pluto’s Satellites: Charon, S/2005 P1, and S/2005 P2 , 2005, astro-ph/0512491.

[59]  R. Canup,et al.  ON A GIANT IMPACT ORIGIN OF CHARON, NIX, AND HYDRA , 2011 .

[60]  Prospects for detection of catastrophic collisions in debris disks , 2005, astro-ph/0503551.

[61]  S. J. Peale,et al.  On the orbits and masses of the satellites of the Pluto–Charon system , 2006 .

[62]  S. Tremaine,et al.  The velocity dispersion in Saturn's rings , 1978 .

[63]  Peter Goldreich,et al.  The Dynamics of Planetary Rings , 1982 .

[64]  K. Ohtsuki,et al.  Temporary capture of planetesimals by a giant planet and implication for the origin of irregular satellites , 2013 .

[65]  Uwe Fink,et al.  The albedos of Pluto and Charon - Wavelength dependence , 1992 .

[66]  Planet formation by coagulation: A focus on Uranus and Neptune , 2004, astro-ph/0405215.

[67]  S. Weidenschilling On the Origin of Binary Transneptunian Objects , 2002 .

[68]  William R. Ward,et al.  Formation of the Galilean Satellites: Conditions of Accretion , 2002 .

[69]  David Jewitt,et al.  The Solar System Beyond Neptune , 1995 .

[70]  M. Wyatt,et al.  Collisional evolution of irregular satellite swarms: detectable dust around Solar system and extrasolar planets , 2010, 1011.4858.

[71]  W. Ward Protoplanet Migration by Nebula Tides , 1997 .

[72]  Erik Asphaug,et al.  Hit-and-run planetary collisions , 2006, Nature.

[73]  S. Kenyon,et al.  Detecting the Dusty Debris of Terrestrial Planet Formation , 2004, astro-ph/0401343.

[74]  S. Charnoz,et al.  Accretion of Saturn's mid-sized moons during the viscous spreading of young massive rings: Solving the paradox of silicate-poor rings versus silicate-rich moons , 2011, 1109.3360.

[75]  David J. Tholen,et al.  Masses of Nix and Hydra , 2007 .

[76]  S. Kenyon Planet Formation in the Outer Solar System , 2001, astro-ph/0112120.

[77]  R. Canup,et al.  CIRCUMPLANETARY DISK FORMATION , 2010 .

[78]  S. Stewart,et al.  Full numerical simulations of catastrophic small body collisions , 2008, 0811.0175.

[79]  R. Canup,et al.  Forced Resonant Migration of Pluto's Outer Satellites by Charon , 2006, Science.

[80]  George W. Wetherill,et al.  Accumulation of a swarm of small planetesimals , 1989 .

[81]  D. Lynden-Bell,et al.  The Evolution of viscous discs and the origin of the nebular variables. , 1974 .

[82]  Hidekazu Tanaka,et al.  Fragmentation model dependence of collision cascades , 2010 .

[83]  G. Stewart,et al.  ORIGIN OF THE DIFFERENT ARCHITECTURES OF THE JOVIAN AND SATURNIAN SATELLITE SYSTEMS , 2009, 1003.5737.

[84]  D. Lin,et al.  On the structure of circumbinary accretion disks and the tidal evolution of commensurable satellites , 1979 .

[85]  M. W. Buie,et al.  Discovery of two new satellites of Pluto , 2006, Nature.

[86]  E. Kokubo,et al.  Formation of Protoplanet Systems and Diversity of Planetary Systems , 2002 .

[87]  D. Lin,et al.  Tidal torques on accretion discs in binary systems with extreme mass ratios. , 1979 .

[88]  C. Baruteau,et al.  HOW NOT TO BUILD TATOOINE: THE DIFFICULTY OF IN SITU FORMATION OF CIRCUMBINARY PLANETS KEPLER 16b, KEPLER 34b, AND KEPLER 35b , 2012, 1206.3484.

[89]  S. Kenyon,et al.  The Size Distribution of Kuiper Belt Objects , 2004, astro-ph/0406556.

[90]  R. S. Harrington,et al.  The satellite of Pluto , 1978 .

[91]  R. Rafikov,et al.  BUILDING TATOOINE: SUPPRESSION OF THE DIRECT SECULAR EXCITATION IN KEPLER CIRCUMBINARY PLANET FORMATION , 2013 .

[92]  Eliot F. Young,et al.  Near-Infrared Spectral Geometric Albedos of Charon and Pluto: Constraints on Charon's Surface Composition , 1996 .

[93]  S. Kenyon,et al.  A Hybrid N-Body-Coagulation Code for Planet Formation , 2006, astro-ph/0602327.

[94]  G. Wetherill,et al.  Formation of planetary embryos: effects of fragmentation, low relative velocity, and independent variation of eccentricity and inclination. , 1993, Icarus.

[95]  S. Stern Collisional Time Scales in the Kuiper Disk and Their Implications , 1995 .

[96]  J. Lunine,et al.  Formation of the Galilean satellites in a gaseous nebula , 1982 .

[97]  S. Weidenschilling,et al.  Stirring of a planetesimal swarm: The role of distant encounters , 1989 .

[98]  S. Ida,et al.  The Effect of Tidal Interaction with a Gas Disk on Formation of Terrestrial Planets , 2002 .

[99]  Harold F. Levison,et al.  Simulations of planet migration driven by planetesimal scattering , 2009 .

[100]  R. Greenberg,et al.  Steady-State Size Distributions for Collisional Populations: Analytical Solution with Size-Dependent Strength , 2003, 1407.3307.

[101]  S. Kenyon,et al.  MIGRATION OF PLANETS EMBEDDED IN A CIRCUMSTELLAR DISK , 2011, 1101.4025.

[102]  Jack J. Lissauer,et al.  Timescales for planetary accretion and the structure of the protoplanetary disk , 1986 .

[103]  Scott J. Kenyon,et al.  CIRCUMBINARY CHAOS: USING PLUTO’S NEWEST MOON TO CONSTRAIN THE MASSES OF NIX AND HYDRA , 2012, 1205.5273.

[104]  Eliot F. Young,et al.  PLUTO AND CHARON WITH THE HUBBLE SPACE TELESCOPE. II. RESOLVING CHANGES ON PLUTO’S SURFACE AND A MAP FOR CHARON , 2010 .

[105]  I. Tóth On the Detectability of Satellites of Small Bodies Orbiting the Sun in the Inner Region of the Edgeworth–Kuiper Belt , 1999 .

[106]  M. C. Wyatt,et al.  HOW OBSERVATIONS OF CIRCUMSTELLAR DISK ASYMMETRIES CAN REVEAL HIDDEN PLANETS : PERICENTER GLOW AND ITS APPLICATION TO THE HR 4796 DISK , 1999 .

[107]  J. S. Dohnanyi Collisional model of asteroids and their debris , 1969 .

[108]  Andrew R. Poppe,et al.  The effect of Nix and Hydra on the putative Pluto–Charon dust cloud , 2011 .

[109]  Termination of Planetary Accretion Due to Gap Formation , 2001, astro-ph/0105444.

[110]  S. Kenyon,et al.  COAGULATION CALCULATIONS OF ICY PLANET FORMATION AT 15–150 AU: A CORRELATION BETWEEN THE MAXIMUM RADIUS AND THE SLOPE OF THE SIZE DISTRIBUTION FOR TRANS-NEPTUNIAN OBJECTS , 2012, 1201.4395.

[111]  C. Ormel,et al.  MIGRATION RATES OF PLANETS DUE TO SCATTERING OF PLANETESIMALS , 2012, 1207.7104.

[112]  W. Benz,et al.  Catastrophic Disruptions Revisited , 1999 .

[113]  D. Lin,et al.  On the tidal interaction between protoplanets and the protoplanetary disk. III. Orbital migration of protoplanets , 1986 .

[114]  K. Ohtsuki,et al.  Evolution of Planetesimal Velocities Based on Three-Body Orbital Integrations and Growth of Protoplanets , 2002 .

[115]  P. Barge,et al.  Thermal velocity equilibrium in the protoplanetary cloud , 1985 .

[116]  Eliot F. Young,et al.  PLUTO AND CHARON WITH THE HUBBLE SPACE TELESCOPE. I. MONITORING GLOBAL CHANGE AND IMPROVED SURFACE PROPERTIES FROM LIGHT CURVES , 2010 .

[117]  S. Charnoz,et al.  Long-term and large-scale viscous evolution of dense planetary rings , 2010, 1006.0633.

[118]  TERRESTRIAL PLANET FORMATION. I. THE TRANSITION FROM OLIGARCHIC GROWTH TO CHAOTIC GROWTH , 2005, astro-ph/0503568.

[119]  Re'em Sari,et al.  Formation of Kuiper-belt binaries by dynamical friction and three-body encounters , 2002, Nature.

[120]  I. Mosqueira,et al.  Formation of the regular satellites of giant planets in an extended gaseous nebula II: satellite migration and survival , 2003 .

[121]  D. Lin,et al.  On the tidal interaction between protoplanets and the primordial solar nebula. II: Self-consistent nonlinear interaction , 1986 .

[122]  K. Ohtsuki,et al.  TEMPORARY CAPTURE OF PLANETESIMALS BY A PLANET FROM THEIR HELIOCENTRIC ORBITS , 2011 .

[123]  F. Marzari,et al.  Relative velocities among accreting planetesimals in binary systems: the circumbinary case , 2006, 0706.3524.

[124]  J. Makino,et al.  Formation of Protoplanets from Massive Planetesimals in Binary Systems , 2007, 0707.2928.

[125]  Richard P. Nelson,et al.  The interaction of giant planets with a disc with MHD turbulence – IV. Migration rates of embedded protoplanets , 2003, astro-ph/0308360.

[126]  Gravitational Stirring in Planetary Debris Disks , 2000, astro-ph/0009185.

[127]  Matthew Holman,et al.  Long-Term Stability of Planets in Binary Systems , 1996 .

[128]  S. Ida,et al.  Distribution of Planetesimals around a Protoplanet in the Nebula Gas , 1996 .