Simulationsstudien zur Untersuchung der Bildqualität für die 3D-Visualisierung tomografischer Volumendaten

In recent years, three-dimensional (3D) visualization of tomographic volume data has become an important tool for surgical planning and simulation, as well as for building virtual body models and many other applications in the medical field. Results depend on a large number of parameters, often interactively chosen, for image acquisition (e. g. voxel size, slice distance), segmentation (threshold value, transfer functions), and visualization (e. g. interpolation, gradient method). Many of the resulting 3D images look very realistic, due to the methods of computer graphics applied. However, it remains mostly unclear how accurate they really are. This work investigates the image quality of 3D visualization of surfaces from tomographic volume data. First, the very complex and multi-faceted state of the art is reviewed and structured according to the basic aspects of image quality, intelligibility and fidelity. Investigation of image quality obviously requires some knowledge of the true anatomical situation, which is not known for in vivo cases. Therefore, I develop a method based on the simulated tomographic acquisition of geometrically described test scenes. The simulated acquisition is done with due consideration of the partial volume effect. Objects are assumed as being homogeneous, with additive noise. Three test objects are developed, representing various anatomical situations (e. g. thin bones, fractures). Furthermore, two error measures, the localization error and the surface normal error, are defined. They describe the accuracy of the rendered surface. Using these methods, I then vary the major parameters and visualize the local deviations on 3D images and corresponding error images. It is shown that under certain conditions, the localization error is at the order of one tenth of the scanner resolution. These conditions are (1) a diameter of the object to be visualized well above the resolution of the scanner; (2) application of the 50% threshold value; (3) a good contrast-to-noise ratio; and (4) processing according to the sampling theorem. Visualization of small structures is limited by the resolution of the scanner. This also applies to volume rendering. For a selection of processing parameters, I am providing a best practice guide. Determination of a suitable threshold value and thus the reproducibility of the results of 3D visualization remains a major problem. The mean contour gradient which was tested here delivers reproducible, but not necessarily optimal values.

[1]  Karl Heinz Höhne,et al.  Realistic Haptic Interaction in Volume Sculpting for Surgery Simulation , 2003, IS4TH.

[2]  M. Prokop Dosisoptimierung in der thorakalen Computertomographie , 2001, Der Radiologe.

[3]  Michael J. Ackerman,et al.  Toward a Common Validation Methodology for Segmentation and Registration Algorithms , 2000, MICCAI.

[4]  Gábor Székely,et al.  Macroscopic Modeling of Vascular Systems , 2002, MICCAI.

[5]  Kevin L. Novins,et al.  Towards Accurate and Efficient Volume Rendering , 1993 .

[6]  J. Mazziotta,et al.  Brain Mapping: The Methods , 2002 .

[7]  M. Riemer,et al.  A new representation of knowledge concerning human anatomy and function , 1995, Nature Medicine.

[8]  Andreas Pommert,et al.  Evaluation of Image Quality in Medical Volume Visualization: The State of the Art , 2002, MICCAI.

[9]  Andreas Pommert,et al.  Intepretation of tomographic images using automatic atlas lookup , 1994, Other Conferences.

[10]  Gerald Q. Maguire,et al.  Comparison and evaluation of retrospective intermodality brain image registration techniques. , 1997, Journal of computer assisted tomography.

[11]  Reinhard Männer,et al.  EyeSi - A Simulator for Intra-ocular Surgery , 1999, MICCAI.

[12]  Andreas Pommert,et al.  Investigation of medical 3D-rendering algorithms , 1990, IEEE Computer Graphics and Applications.

[13]  Colin Studholme,et al.  Automated 3-D registration of MR and CT images of the head , 1996, Medical Image Anal..

[14]  Marcus Vetter,et al.  Integration der Operationsplanung in den OP-Saal für die onkologische Leberchirurgie , 2001, Bildverarbeitung für die Medizin.

[15]  Alan Watt 3D-Computergrafik (3. Aufl.) , 2001, Pearson Studium.

[16]  Steve Marschner,et al.  An evaluation of reconstruction filters for volume rendering , 1994, Proceedings Visualization '94.

[17]  Lee Westover,et al.  Footprint evaluation for volume rendering , 1990, SIGGRAPH.

[18]  MASSACHUSETTS General Hospital case No. 29381. , 1952, Arizona medicine.

[19]  Hans-Georg Pagendarm,et al.  Comparative Visualization - Approaches and Examples , 1994 .

[20]  A K Banerjee VOXEL-MAN 3D-Navigator. Brain and skull. Regional, functional and radiological anatomy (2nd edn). CD-ROM. By K-H Höhne et al, 2001 (Springer-Verlag, Heidelberg), £56.40 ISBN 3-540-14910-4 , 2002 .

[21]  E. Maeland On the comparison of interpolation methods. , 1988, IEEE transactions on medical imaging.

[22]  Ron Kikinis,et al.  High Performance Computing in Image Guided Therapy: Computer Assisted Three-Dimensional Planning and Real-Time Navigation for Neurosurgical Procedures , 2001, Bildverarbeitung für die Medizin.

[23]  V. Spitzer,et al.  The visible human male: a technical report. , 1996, Journal of the American Medical Informatics Association : JAMIA.

[24]  G. Adam Stellenwert der MR-Kolonographie Vergleich zwischen multiplanarer Rekonstruktion und virtueller Koloskopie , 2002 .

[25]  Arun N. Netravali,et al.  Reconstruction filters in computer-graphics , 1988, SIGGRAPH.

[26]  Victoria Interrante,et al.  Conveying the 3D Shape of Smoothly Curving Transparent Surfaces via Texture , 1997, IEEE Trans. Vis. Comput. Graph..

[27]  Roger A. Browse,et al.  Choosing Rendering Parameters for Effective Communication of 3D Shape , 2000, IEEE Computer Graphics and Applications.

[28]  Bernd Hohler,et al.  Software-Qualitätsmodelle: Capability Maturity Model (SEI), Bootstrap-Methode, ISO 9000 ff , 1995, Inform. Spektrum.

[29]  Alain Duhamel,et al.  Volume rendering of the tracheobronchial tree: clinical evaluation of bronchographic images , 1999 .

[30]  William E. Lorensen,et al.  Decimation of triangle meshes , 1992, SIGGRAPH.

[31]  V S Ramachandran,et al.  Perceiving shape from shading. , 1988, Scientific American.

[32]  Klaus Mueller,et al.  A practical evaluation of popular volume rendering algorithms , 2000, VVS '00.

[33]  Karl Heinz Höhne,et al.  Interactive 3D-Segmentation of Tomographic Image Volumes , 1992, DAGM-Symposium.

[34]  M W Vannier,et al.  Binary Nature and Radiographic Identifiability of Craniosynostosis , 1994, Investigative radiology.

[35]  M. Bomans,et al.  Volume Visualization in Magnetic Resonance Angiography , 1992 .

[36]  Arie E. Kaufman,et al.  Volume sampled voxelization of geometric primitives , 1993, Proceedings Visualization '93.

[37]  Min Chen,et al.  Comparative evaluation of visualization and experimental results using image comparison metrics , 2002, IEEE Visualization, 2002. VIS 2002..

[38]  Thomas K. Pilgram,et al.  Spiral CT colonography (virtual colonoscopy): multiobserver study of different image display techniques compared to colonoscopy , 1999, Medical Imaging.

[39]  Max A. Viergever,et al.  Performance Characterization in Computer Vision , 2000, Computational Imaging and Vision.

[40]  Benoît B. Mandelbrot,et al.  Die fraktale Geometrie der Natur , 1987 .

[41]  J E Kuhlman,et al.  Three-dimensional helical CT of intrahepatic venous structures: comparison of three rendering techniques. , 1996, Journal of computer assisted tomography.

[42]  M W Vannier,et al.  Craniosynostosis: diagnostic value of three-dimensional CT reconstruction. , 1989, Radiology.

[43]  H. Siegfried Stiehl Medical Computer Vision - Quo Vadis? Or: Towards Bridging the Gap Between Theory and Practice , 2000, Künstliche Intell..

[44]  Stefan Schlechtweg,et al.  Non-photorealistic computer graphics: modeling, rendering, and animation , 2002 .

[45]  Andreas Pommert,et al.  On the Accuracy of Isosurfaces in Tomographic Volume Visualization , 2002, MICCAI.

[46]  G Wang,et al.  Visualization of colorectal polyps with spiral CT colography: evaluation of processing parameters with perspective volume rendering. , 1997, Radiology.

[47]  James Arvo,et al.  Controlled precision volume integration , 1992, VVS.

[48]  D Magid,et al.  Three-dimensional volumetric display of CT data: effect of scan parameters upon image quality. , 1991, Journal of computer assisted tomography.

[49]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[50]  M. Vannier,et al.  Evaluation of 3D imaging. , 2000, Critical reviews in diagnostic imaging.

[51]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[52]  Hans-Ulrich Kauczor,et al.  Three-dimensional helical CT of the tracheobronchial tree: evaluation of imaging protocols and assessment of suspected stenoses with bronchoscopic correlation , 1997 .

[53]  Karl Heinz Höhne,et al.  Accuracy of Images and Measurements in 3D Bone Imaging , 1991 .

[54]  William E. Lorensen,et al.  The Transfer Function Bake-Off , 2001, IEEE Computer Graphics and Applications.

[55]  Raghu Machiraju,et al.  Reconstruction Error Characterization and Control: A Sampling Theory Approach , 1996, IEEE Trans. Vis. Comput. Graph..

[56]  Alex T. Pang,et al.  Data Level Comparisons of Surface Classifications and Gradient Filters , 2001, VG.

[57]  Michael W. Vannier,et al.  Assessing craniofacial surgical simulation , 1996, IEEE Computer Graphics and Applications.

[58]  Wido Menhardt Bildanalyse und ikonische Fuzzy Sets , 1989, Künstliche Intell..

[59]  Bernd Girod,et al.  Craniofacial Surgery Simulation , 1996, VBC.

[60]  Ramin Shahidi,et al.  Validation of medical image processing in image-guided therapy , 2002, IEEE Transactions on Medical Imaging.

[61]  P Tessier,et al.  Three dimensional imaging in medicine. A critique by surgeons. , 1986, Scandinavian journal of plastic and reconstructive surgery.

[62]  Josef Stoer,et al.  Numerische Mathematik 1 , 1989 .

[63]  Russell H. Taylor,et al.  Computer-Integrated Surgery: Technology and Clinical Applications , 1995 .

[64]  Hans-Peter Meinzer,et al.  The Heidelberg ray tracing model , 1991, IEEE Computer Graphics and Applications.

[65]  Andreas Pommert,et al.  Creating a high-resolution spatial/symbolic model of the inner organs based on the Visible Human , 2001, Medical Image Anal..

[66]  W. Kalender,et al.  The European Spine Phantom--a tool for standardization and quality control in spinal bone mineral measurements by DXA and QCT. , 1995, European journal of radiology.

[67]  C D Werner,et al.  Development of a human body model for numerical calculation of electrical fields. , 2000, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[68]  Marc Levoy,et al.  Display of surfaces from volume data , 1988, IEEE Computer Graphics and Applications.

[69]  J. A. Parker,et al.  Comparison of Interpolating Methods for Image Resampling , 1983, IEEE Transactions on Medical Imaging.

[70]  E. Kreyszig Statistische Methoden und ihre Anwendungen , 1998 .

[71]  D D Robertson,et al.  Comparison of helical and serial CT with regard to three-dimensional imaging of musculoskeletal anatomy. , 1992, Radiology.

[72]  Gerald Q. Maguire,et al.  Quantitative And Qualitative Comparison Of Volumetric And Surface Rendering Techniques , 1990, 1990 IEEE Nuclear Science Symposium Conference Record.

[73]  R. Keys Cubic convolution interpolation for digital image processing , 1981 .

[74]  Andreas Pommert,et al.  Validation of medical volume visualization: a literature review , 2003, CARS.

[75]  T. Moller,et al.  Design of accurate and smooth filters for function and derivative reconstruction , 1998, IEEE Symposium on Volume Visualization (Cat. No.989EX300).

[76]  Gregory M. Nielson Theme Issue Introduction: Challenges in Visualization Research , 1996, IEEE Trans. Vis. Comput. Graph..

[77]  G. Wang,et al.  Stair-step artifacts in three-dimensional helical CT: an experimental study. , 1994, Radiology.

[78]  Ulf Tiede,et al.  Realistische 3D-Visualisierung multiattributierter und multiparametrischer Volumendaten , 1999 .

[79]  K D Hopper,et al.  The quality of 3D reconstructions from 1.0 and 1.5 pitch helical and conventional CT. , 1996, Journal of computer assisted tomography.

[80]  U. Tiede,et al.  Surface shading in tomographic volume visualization: a comparative study , 1990, [1990] Proceedings of the First Conference on Visualization in Biomedical Computing.

[81]  Michael E. Goss,et al.  Opacity-weighted color interpolation for volume sampling , 1998, IEEE Symposium on Volume Visualization (Cat. No.989EX300).

[82]  H. Kauczor,et al.  Phantomuntersuchung zur Optimierung der Spiral-CT und 3 D-Rekonstruktion des Tracheobronchialsystems , 1996 .

[83]  T. Lehmann,et al.  Addendum: B-spline interpolation in medical image processing , 2001, IEEE Transactions on Medical Imaging.

[84]  Ii. R.J. Moorhead,et al.  Signal processing aspects of scientific visualization , 1995 .

[85]  Karl Heinz Höhne,et al.  High quality rendering of attributed volume data , 1998 .

[86]  K. Höhne,et al.  Volume Cutting for Virtual Petrous Bone Surgery , 2002, Computer aided surgery : official journal of the International Society for Computer Aided Surgery.

[87]  H. Hauser,et al.  Mastering Windows: Improving Reconstruction , 2000, 2000 IEEE Symposium on Volume Visualization (VV 2000).

[88]  Mark W. Jones,et al.  Voxelisation: Modelling for Volume Graphics , 2000, VMV.

[89]  Reiner Lenz,et al.  Presentation and perception of 3D images , 1986 .

[90]  W. Kalender,et al.  Accuracy limits for the determination of cortical width and density: the influence of object size and CT imaging parameters. , 1999, Physics in medicine and biology.

[91]  Rafael Wiemker,et al.  Fast computation of isosurface contour spectra for volume visualization , 2001, CARS.

[92]  Paul A. Yushkevich,et al.  Segmentation, registration, and measurement of shape variation via image object shape , 1999, IEEE Transactions on Medical Imaging.

[93]  Markus Gross,et al.  Simulating facial surgery using finite element models , 1996 .

[94]  Reiner Lenz,et al.  Evaluation of methods for shaded surface display of CT-volumes , 1988, [1988 Proceedings] 9th International Conference on Pattern Recognition.

[95]  F. Spoor,et al.  Vestibular evidence for the evolution of aquatic behaviour in early cetaceans , 2002, Nature.

[96]  L C Busch,et al.  Anatomical accuracy in medical 3D modeling. , 2001, Studies in health technology and informatics.

[97]  Hans Hagen,et al.  Research issues in data modeling for scientific visualization , 1994, IEEE Computer Graphics and Applications.

[98]  Donald P. Greenberg,et al.  Perceiving spatial relationships in computer-generated images , 1992, IEEE Computer Graphics and Applications.

[99]  C. Metz ROC Methodology in Radiologic Imaging , 1986, Investigative radiology.

[100]  Thomas Martin Deserno,et al.  Survey: interpolation methods in medical image processing , 1999, IEEE Transactions on Medical Imaging.

[101]  K D Hopper,et al.  Mucosal detail at CT virtual reality: surface versus volume rendering. , 2000, Radiology.

[102]  Alex T. Pang,et al.  Extended Specifications and Test Data Sets for Data Level Comparisons of Direct Volume Rendering Algorithms , 2001, IEEE Trans. Vis. Comput. Graph..

[103]  M W Vannier,et al.  Craniosynostosis: diagnostic imaging with three-dimensional CT presentation. , 1994, AJNR. American journal of neuroradiology.

[104]  G. Marchal,et al.  Multi-modal volume registration by maximization of mutual information , 1997 .

[105]  Peter Williams,et al.  Metrics and generation specifications for comparing volume‐rendered images , 1999 .

[106]  David G. Heath,et al.  Skeletal 3-D CT: advantages of volume rendering over surface rendering , 1996, Skeletal Radiology.

[107]  Jaap Smit,et al.  Image Quality Improvements in Volume Rendering , 1996, VBC.

[108]  R. Yagel,et al.  - 1-eNormal Estimation in 3 D Discrete Spac , 1992 .

[109]  Arie E. Kaufman,et al.  Alias-Free Voxelization of Geometric Objects , 1999, IEEE Trans. Vis. Comput. Graph..

[110]  Karl Heinz Höhne,et al.  Reduktion der Oberflächenbeschreibung triangulierter Oberflächen durch Anpassung an die Objektform , 1992, DAGM-Symposium.

[111]  Barthold Lichtenbelt,et al.  Introduction to volume rendering , 1998 .

[112]  R. Leuwer,et al.  Die stereoskopische Simulation ohrchirurgischer Eingriffe an einem neuartigen 3D-Computermodell , 2001 .