Properties of fluoride microresonators for mid-IR applications.

We study crystalline fluoride microresonators for mid-infrared (mid-IR) applications. Whispering gallery mode resonators were fabricated with BaF2, CaF2, and MgF2 crystals. The quality factors were measured at wavelengths of 1.56 and 4.58 μm. The impacts of post-fabrication processing, impurities, and surface water are highlighted. The mid-IR optical losses due to multiphoton absorption are measured. It is found that MgF2 resonators have a room temperature Q-factor of 8.3×106 at a wavelength of 4.58 μm, limited by multiphoton absorption.

[1]  Nan Yu,et al.  Dispersion engineering of crystalline resonators via microstructuring , 2015 .

[2]  Simone Borri,et al.  Microcavity‐Stabilized Quantum Cascade Laser , 2016 .

[3]  V. Brasch,et al.  Photonic chip–based optical frequency comb using soliton Cherenkov radiation , 2014, Science.

[4]  P. Barraclough,et al.  Adsorption of water vapour by magnesium fluoride , 1976 .

[5]  P. Miles Temperature dependence of multiphonon absorption in zinc selenide. , 1977, Applied optics.

[6]  S. S. Mitra,et al.  Multiphonon infrared absorption in highly transparent Mg F 2 , 1979 .

[7]  S. Logunov,et al.  Experimental and theoretical study of bulk light scattering in CaF2 monocrystals , 2005 .

[8]  A. Luiten,et al.  Mode-interactions and polarization conversion in a crystalline microresonator. , 2015, Optics letters.

[9]  M. Lipson,et al.  Broadband mid-infrared frequency comb generation in a Si3N4 microresonator , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[10]  Mani Hossein-Zadeh,et al.  High-Q microresonators for mid-IR light sources and molecular sensors. , 2012, Optics letters.

[11]  G. Ewing Ambient thin film water on insulator surfaces. , 2006, Chemical reviews.

[12]  Steven A. Miller,et al.  Tunable frequency combs based on dual microring resonators , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[13]  A. Matsko,et al.  Photorefractive effects in magnesium doped lithium niobate whispering gallery mode resonators , 2006 .

[14]  N. E. Massa,et al.  Multiphonon infrared absorption in the transparent regime of alkaline-earth fluorides , 1976 .

[15]  M. J. Dodge,et al.  Refractive properties of magnesium fluoride. , 1984, Applied optics.

[16]  Albert Schliesser,et al.  Mid-infrared frequency combs , 2012, Nature Photonics.

[17]  A. Matsko,et al.  Optical hyperparametric oscillations in a whispering-gallery-mode resonator: Threshold and phase diffusion , 2005 .

[18]  Michael L. Gorodetsky,et al.  Fundamental thermal fluctuations in microspheres , 2004 .

[19]  Yanne K Chembo,et al.  On the dispersion management of fluorite whispering-gallery mode resonators for Kerr optical frequency comb generation in the telecom and mid-infrared range. , 2015, Optics express.

[20]  A. Matsko,et al.  Optical resonators with whispering-gallery modes-part II: applications , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[21]  J. Peña,et al.  Changes in the optical absorption of CaF2, SrF2 and BaF2 induced by thermal annealing in different atmospheres , 1990 .

[22]  A. A. Savchenkov,et al.  High spectral purity Kerr frequency comb radio frequency photonic oscillator , 2015, Nature Communications.

[23]  Vladimir S. Ilchenko,et al.  Rayleigh scattering in high-Q microspheres , 2000 .

[24]  L. Maleki,et al.  Pigtailing the high-Q microsphere cavity: a simple fiber coupler for optical whispering-gallery modes. , 1999, Optics letters.

[25]  Lute Maleki,et al.  Generation of Kerr combs centered at 4.5 μm in crystalline microresonators pumped with quantum-cascade lasers. , 2015, Optics letters.

[26]  John R. Vig UV/ozone cleaning of surfaces , 1976 .