A numerical method for Mean Field Games on networks

We propose a numerical method for stationary Mean Field Games defined on a network. In this framework a correct approximation of the transition conditions at the vertices plays a crucial role. We prove existence, uniqueness and convergence of the scheme and we also propose a least squares method for the solution of the discrete system. Numerical experiments are carried out.

[1]  Yves Achdou,et al.  Finite Difference Methods for Mean Field Games , 2013 .

[2]  Yves Achdou,et al.  Mean Field Games: Convergence of a Finite Difference Method , 2012, SIAM J. Numer. Anal..

[3]  Elisabetta Carlini,et al.  A Fully Discrete Semi-Lagrangian Scheme for a First Order Mean Field Game Problem , 2012, SIAM J. Numer. Anal..

[4]  Enrique Zuazua,et al.  Numerical approximation schemes for multi-dimensional wave equations in asymmetric spaces , 2014, Math. Comput..

[5]  Alex M. Andrew,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edition) , 2000 .

[6]  P. Lions,et al.  Mean field games , 2007 .

[7]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[8]  Benedetto Piccoli,et al.  Numerical Schemes for the Optimal Input Flow of a Supply Chain , 2012, SIAM J. Numer. Anal..

[9]  Benedetto Piccoli,et al.  Numerical approximations of a traffic flow model on networks , 2006, Networks Heterog. Media.

[10]  Mark Freidlin,et al.  Diffusion Processes on Graphs and the Averaging Principle , 1993 .

[11]  Elisabetta Carlini,et al.  A model problem for Mean Field Games on networks , 2014, 1402.2467.

[12]  S. Nicaise,et al.  Elliptic operators on elementary ramified spaces , 1988 .

[13]  A. Lachapelle,et al.  COMPUTATION OF MEAN FIELD EQUILIBRIA IN ECONOMICS , 2010 .

[14]  Olivier Guéant,et al.  Mean Field Games and Applications , 2011 .

[15]  Christian Dogbé,et al.  Modeling crowd dynamics by the mean-field limit approach , 2010, Math. Comput. Model..

[16]  Pierre-Louis Lions,et al.  Partial differential equation models in macroeconomics , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[17]  Yves Achdou,et al.  Mean Field Games: Numerical Methods , 2010, SIAM J. Numer. Anal..

[18]  Fabio Camilli,et al.  Stationary Mean Field Games Systems Defined on Networks , 2015, SIAM J. Control. Optim..

[19]  Peter E. Caines,et al.  Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle , 2006, Commun. Inf. Syst..

[20]  Olivier Gu'eant,et al.  Mean field games equations with quadratic Hamiltonian: a specific approach , 2011, 1106.3269.