The Influence of Pulsed Electron Beam Treatment on Properties of PLLA Nonwoven Materials Produced by Solution Blow Spinning

[1]  E. Bolbasov,et al.  The investigation of the production method influence on the structure and properties of the ferroelectric nonwoven materials based on vinylidene fluoride – tetrafluoroethylene copolymer , 2016 .

[2]  G. Kholodnaya,et al.  Influence of current - conducting inserts in a drift tube on transportation of a pulsed electron beam at gigawatt power , 2015 .

[3]  G. Kholodnaya,et al.  Study on nanosecond pulsed electron beam generation , 2014 .

[4]  J. Rosiak,et al.  Hydroxyl radical-induced crosslinking and radiation-initiated hydrogel formation in dilute aqueous solutions of carboxymethylcellulose. , 2014, Carbohydrate polymers.

[5]  K. Nakayama,et al.  WAXD and FTIR Studies of Electron Beam Irradiated Biodegradable Polymers , 2014 .

[6]  E. Bolbasov,et al.  THE DYNAMICS OF IN VITRO DEGRADATION OF NON-WOVEN POLYLACTIDE MATRICES IN MODEL BIOLOGICAL LIQUID , 2013 .

[7]  E. Bolbasov,et al.  Nonwoven Polylactide Scaffolds Obtained by Solution Blow Spinning and the In Vitro Degradation Dynamics , 2013 .

[8]  F. Poncin‐Epaillard,et al.  Elaboration and surface modification of structured poly(L-lactic acid) thin film on various substrates. , 2013, Materials science & engineering. C, Materials for biological applications.

[9]  Wei Lai,et al.  Nucleation and crystal growth kinetics of poly(l-lactic acid) with self-assembled DBS nanofibrils , 2013 .

[10]  Y. Kodama,et al.  Ionizing Radiation Effect on Morphology of PLLA: PCL Blends and on Their Composite with Coconut Fiber , 2012 .

[11]  Clarisse Ribeiro,et al.  Tailoring the morphology and crystallinity of poly(L-lactide acid) electrospun membranes. , 2011, Science and technology of advanced materials.

[12]  D. Farrar,et al.  Through-thickness control of polymer bioresorption via electron beam irradiation. , 2011, Acta biomaterialia.

[13]  L. Lim,et al.  Poly(Lactic Acid): Synthesis, Structures, Properties, Processing, and Applications , 2010 .

[14]  Jie Pan,et al.  Properties and hydrolysis of PLGA and PLLA cross-linked with electron beam radiation , 2010 .

[15]  A. Janorkar,et al.  Poly(lactic acid) modifications , 2010 .

[16]  D. Farrar,et al.  The modification of PLA and PLGA using electron-beam radiation. , 2009, Journal of biomedical materials research. Part A.

[17]  F. Boey,et al.  Hydrolytic degradation characteristics of irradiated multi-layered PLGA films. , 2008, International journal of pharmaceutics.

[18]  Y. Inoue,et al.  Polymorphous Crystallization and Multiple Melting Behavior of Poly(l-lactide): Molecular Weight Dependence , 2007 .

[19]  S. Galović,et al.  Thermal and crystallization behaviour of gamma irradiated PLLA , 2007 .

[20]  C. Laurencin,et al.  Biodegradable polymers as biomaterials , 2007 .

[21]  Jöns Hilborn,et al.  Poly(lactic acid) fiber : An overview , 2007 .

[22]  D. Farrar,et al.  Investigation into depth dependence of effect of E-beam radiation on mechanical and degradation properties of polylactide , 2006 .

[23]  Say Chye Joachim Loo,et al.  Hydrolytic degradation of electron beam irradiated high molecular weight and non-irradiated moderate molecular weight PLLA. , 2006, Acta biomaterialia.

[24]  J. Rosiak,et al.  Poly(ε-caprolactone) Biomaterial Sterilized by E-Beam Irradiation , 2006 .

[25]  J. Mano,et al.  Glass transition dynamics and structural relaxation of PLLA studied by DSC : Influence of crystallinity , 2005 .

[26]  J. Loo,et al.  Degradation of poly(lactide-co-glycolide) (PLGA) and poly(L-lactide) (PLLA) by electron beam radiation. , 2005, Biomaterials.

[27]  D. Mooney,et al.  Controlled degradation of hydrogels using multi-functional cross-linking molecules. , 2004, Biomaterials.

[28]  G. Remnev,et al.  A High-Current Pulsed Accelerator with a Matching Transformer , 2004 .

[29]  Say Chye Joachim Loo,et al.  Radiation effects on poly(lactide-co-glycolide) (PLGA) and poly(l-lactide) (PLLA) , 2004 .

[30]  Kwangsok Kim,et al.  Control of degradation rate and hydrophilicity in electrospun non-woven poly(D,L-lactide) nanofiber scaffolds for biomedical applications. , 2003, Biomaterials.

[31]  V. Efremov,et al.  Effect of intense energy fluxes on vacuum-tight rubber , 2003 .

[32]  P. Törmälä,et al.  Effect of gamma, ethylene oxide, electron beam, and plasma sterilization on the behaviour of SR-PLLA fibres in vitro , 2002, Journal of biomaterials science. Polymer edition.

[33]  M Santucci,et al.  Gamma irradiation effects on poly(DL-lactictide-co-glycolide) microspheres. , 1998, Journal of controlled release : official journal of the Controlled Release Society.

[34]  Eal H. Lee,et al.  Improved surface properties of polymer materials by multiple ion beam treatment , 1991 .

[35]  A. Pennings,et al.  Crystal structure, conformation and morphology of solution-spun poly(L-lactide) fibers , 1990 .

[36]  J. Kost,et al.  Ultrasound-enhanced polymer degradation and release of incorporated substances. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[37]  A. Schindler,et al.  Polylactide. II. Viscosity–molecular weight relationships and unperturbed chain dimensions , 1979 .

[38]  D. Farrar,et al.  Electron-beam treatment of poly(lactic acid) to control degradation profiles , 2011 .

[39]  M. Kotaki,et al.  Effect of electron beam irradiation on the structure and properties of electrospun PLLA and PLLA/PDLA blend nanofibers. , 2010, Acta biomaterialia.

[40]  K. Nakayama,et al.  Investigation of irradiated biodegradable blends by FTIR and wide-angle X-ray diffraction , 2009 .

[41]  T. Chang,et al.  In-vivo degradation of poly(lactic acid) of different molecular weights. , 1985, Biomaterials, medical devices, and artificial organs.

[42]  J. Rabek,et al.  Experimental methods in polymer chemistry: Physical principles and application , 1980 .