Thin-film smoothed particle hydrodynamics fluid

We propose a particle-based method to simulate thin-film fluid that jointly facilitates aggressive surface deformation and vigorous tangential flows. We build our dynamics model from the surface tension driven Navier-Stokes equation with the dimensionality reduced using the asymptotic lubrication theory and customize a set of differential operators based on the weakly compressible Smoothed Particle Hydrodynamics (SPH) for evolving pointset surfaces. The key insight is that the compressible nature of SPH, which is unfavorable in its typical usage, is helpful in our application to co-evolve the thickness, calculate the surface tension, and enforce the fluid incompressibility on a thin film. In this way, we are able to two-way couple the surface deformation with the in-plane flows in a physically based manner. We can simulate complex vortical swirls, fingering effects due to Rayleigh-Taylor instability, capillary waves, Newton's interference fringes, and the Marangoni effect on liberally deforming surfaces by presenting both realistic visual results and numerical validations. The particle-based nature of our system also enables it to conveniently handle topology changes and codimension transitions, allowing us to marry the thin-film simulation with a wide gamut of 3D phenomena, such as pinch-off of unstable catenoids, dripping under gravity, merging of droplets, as well as bubble rupture.

[1]  Guirong Liu,et al.  Smoothed Particle Hydrodynamics (SPH): an Overview and Recent Developments , 2010 .

[2]  Matthias B. Hullin,et al.  Chemomechanical simulation of soap film flow on spherical bubbles , 2020, ACM Trans. Graph..

[3]  E. Vouga,et al.  Discrete viscous threads , 2010, ACM Trans. Graph..

[4]  Chang-Hun Kim,et al.  Discontinuous fluids , 2005, ACM Trans. Graph..

[5]  Ronald Fedkiw,et al.  A vortex particle method for smoke, water and explosions , 2005, ACM Trans. Graph..

[6]  Hongkai Zhao,et al.  A local mesh method for solving PDEs on point clouds , 2013 .

[7]  P. Meakin,et al.  A smoothed particle hydrodynamics model for miscible flow in three-dimensional fractures and the two-dimensional Rayleigh-Taylor instability , 2005 .

[8]  Steven J. Ruuth,et al.  A simple embedding method for solving partial differential equations on surfaces , 2008, J. Comput. Phys..

[9]  Kei Iwasaki,et al.  Real-time rendering of soap bubbles taking into account light interference , 2004, Proceedings Computer Graphics International, 2004..

[10]  Jos Stam,et al.  Flows on surfaces of arbitrary topology , 2003, ACM Trans. Graph..

[11]  Bo Zhu,et al.  Codimensional surface tension flow using moving-least-squares particles , 2020, ACM Trans. Graph..

[12]  Martin Rumpf,et al.  Functional Thin Films on Surfaces , 2015, IEEE Transactions on Visualization and Computer Graphics.

[13]  Marianne Gjestvold Omang,et al.  SPH in spherical and cylindrical coordinates , 2006, J. Comput. Phys..

[14]  J. Morris,et al.  Modeling Low Reynolds Number Incompressible Flows Using SPH , 1997 .

[15]  Matthias Teschner,et al.  An Implicit SPH Formulation for Incompressible Linearly Elastic Solids , 2018, Comput. Graph. Forum.

[16]  Kyoungju Park,et al.  Giant soap bubble creation model , 2015, Comput. Animat. Virtual Worlds.

[17]  M. Muradoglu,et al.  A front-tracking method for computational modeling of viscoelastic two-phase flow systems , 2015 .

[18]  Chang-Hun Kim,et al.  Animation of Bubbles in Liquid , 2003, Comput. Graph. Forum.

[19]  Matthias Teschner,et al.  Implicit Incompressible SPH , 2014, IEEE Transactions on Visualization and Computer Graphics.

[20]  Jan Bender,et al.  Divergence-Free SPH for Incompressible and Viscous Fluids , 2017, IEEE Transactions on Visualization and Computer Graphics.

[21]  Steven J. Ruuth,et al.  A localized meshless method for diffusion on folded surfaces , 2015, J. Comput. Phys..

[22]  Anthony J. Robinson,et al.  Influence of surface tension implementation in Volume of Fluid and coupled Volume of Fluid with Level Set methods for bubble growth and detachment , 2013 .

[23]  Zhilin Li,et al.  A level-set method for interfacial flows with surfactant , 2006, J. Comput. Phys..

[24]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[25]  Daniel J. Price Smoothed particle hydrodynamics and magnetohydrodynamics , 2010, J. Comput. Phys..

[26]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[27]  Ronald Fedkiw,et al.  Two-Way Coupled SPH and Particle Level Set Fluid Simulation , 2008, IEEE Transactions on Visualization and Computer Graphics.

[28]  Bin Wang,et al.  A level-set method for magnetic substance simulation , 2020, ACM Trans. Graph..

[29]  Markus H. Gross,et al.  SPH Based Shallow Water Simulation , 2011, VRIPHYS.

[30]  Maolin Tang A Hybrid , 2010 .

[31]  Huamin Wang,et al.  Enriching SPH simulation by approximate capillary waves , 2016, Symposium on Computer Animation.

[32]  Robert Bridson,et al.  Fluid Simulation for Computer Graphics , 2008 .

[33]  Ralph R. Martin,et al.  A unified particle system framework for multi-phase, multi-material visual simulations , 2017, ACM Trans. Graph..

[34]  Matthias Teschner,et al.  An implicit viscosity formulation for SPH fluids , 2015, ACM Trans. Graph..

[35]  Dominik L. Michels,et al.  On the accurate large-scale simulation of ferrofluids , 2019, ACM Trans. Graph..

[36]  Matthias Teschner,et al.  IISPH‐FLIP for incompressible fluids , 2014, Comput. Graph. Forum.

[37]  Y. Couder,et al.  On the hydrodynamics of soap films , 1989 .

[38]  P. Marmottant,et al.  Sound and vision: visualization of music with a soap film , 2017 .

[39]  Metin Muradoglu,et al.  A front-tracking method for computation of interfacial flows with soluble surfactants , 2008, J. Comput. Phys..

[40]  NiyogiPartha,et al.  Towards a theoretical foundation for Laplacian-based manifold methods , 2008 .

[41]  R. Pajarola,et al.  Predictive-corrective incompressible SPH , 2009, SIGGRAPH 2009.

[42]  Ralph R. Martin,et al.  Pairwise Force SPH Model for Real-Time Multi-Interaction Applications , 2017, IEEE Transactions on Visualization and Computer Graphics.

[43]  Theodore Kim,et al.  Closest point turbulence for liquid surfaces , 2013, TOGS.

[44]  Sadashige Ishida,et al.  A model for soap film dynamics with evolving thickness , 2020, ACM Trans. Graph..

[45]  Ronald Fedkiw,et al.  A hybrid Lagrangian-Eulerian formulation for bubble generation and dynamics , 2013, SCA '13.

[46]  Markus H. Gross,et al.  Particle-based fluid simulation for interactive applications , 2003, SCA '03.

[47]  Richard Keiser,et al.  Multiresolution particle-based fluids , 2006 .

[48]  Afonso Paiva,et al.  Mesh‐Free Discrete Laplace–Beltrami Operator , 2013, Comput. Graph. Forum.

[49]  Maks Ovsjanikov,et al.  Functional Fluids on Surfaces , 2014 .

[50]  R. Saye High-order methods for computing distances to implicitly defined surfaces , 2014 .

[51]  Jens Schneider,et al.  Real‐Time Fluid Effects on Surfaces using the Closest Point Method , 2012, Comput. Graph. Forum.

[52]  David J. Hill,et al.  Efficient Fluid Simulation on the Surface of a Sphere , 2016, ACM Trans. Graph..

[53]  Eitan Grinspun,et al.  Discrete viscous sheets , 2012, ACM Trans. Graph..

[54]  Bo Zhu,et al.  Creating and Preserving Vortical Details in SPH Fluid , 2010, Comput. Graph. Forum.

[55]  Jan Bender,et al.  Interlinked SPH Pressure Solvers for Strong Fluid-Rigid Coupling , 2019, ACM Trans. Graph..

[56]  David Levin,et al.  The approximation power of moving least-squares , 1998, Math. Comput..

[57]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[58]  Matthias Teschner,et al.  An implicit compressible SPH solver for snow simulation , 2020, ACM Trans. Graph..

[59]  Ronald Fedkiw,et al.  Codimensional surface tension flow on simplicial complexes , 2014, ACM Trans. Graph..

[60]  Mirela Ben-Chen,et al.  Real-time viscous thin films , 2018, ACM Trans. Graph..

[61]  Amir Reza Zarrati,et al.  Curvilinear smoothed particle hydrodynamics , 2017 .

[62]  Matthias Teschner,et al.  Pressure Boundaries for Implicit Incompressible SPH , 2018, ACM Trans. Graph..

[63]  Reiji Tsuruno,et al.  A particle-based method for preserving fluid sheets , 2011, SCA '11.

[64]  Robert Bridson,et al.  Ghost SPH for animating water , 2012, ACM Trans. Graph..

[65]  S. Osher,et al.  Numerical simulations for the motion of soap bubbles using level set methods , 2008 .

[66]  Jan Bender,et al.  Smoothed Particle Hydrodynamics Techniques for the Physics Based Simulation of Fluids and Solids , 2020, Eurographics.

[67]  Matthias Teschner,et al.  Versatile surface tension and adhesion for SPH fluids , 2013, ACM Trans. Graph..

[68]  Toshiya Hachisuka,et al.  A hyperbolic geometric flow for evolving films and foams , 2017, ACM Trans. Graph..

[69]  L. Brookshaw,et al.  A Method of Calculating Radiative Heat Diffusion in Particle Simulations , 1985, Publications of the Astronomical Society of Australia.

[70]  Shin-Jin Kang,et al.  Procedural Synthesis using Vortex Particle Method for Fluid Simulation , 2009, Comput. Graph. Forum.

[71]  J. Monaghan,et al.  A refined particle method for astrophysical problems , 1985 .

[72]  Matthias Teschner,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Weakly Compressible Sph for Free Surface Flows , 2022 .

[73]  Eitan Grinspun,et al.  Double bubbles sans toil and trouble , 2015, ACM Trans. Graph..

[74]  Jian-Jun Zhang,et al.  Blue noise sampling using an SPH-based method , 2015, ACM Trans. Graph..

[75]  Jun-Hai Yong,et al.  Simulation of bubbles , 2006, SCA '06.

[76]  Janusz Rzeszut,et al.  Interference colours of soap bubbles , 2003, The Visual Computer.

[77]  Rüdiger Westermann,et al.  A Semi‐Lagrangian Closest Point Method for Deforming Surfaces , 2013, Comput. Graph. Forum.

[78]  Ronald Fedkiw,et al.  A monolithic mass tracking formulation for bubbles in incompressible flow , 2013, J. Comput. Phys..

[79]  Mikhail Belkin,et al.  Constructing Laplace operator from point clouds in Rd , 2009, SODA.

[80]  Pascal Barla,et al.  A practical extension to microfacet theory for the modeling of varying iridescence , 2017, ACM Trans. Graph..

[81]  J. Sethian,et al.  Multiscale Modeling of Membrane Rearrangement, Drainage, and Rupture in Evolving Foams , 2013, Science.

[82]  Jean-Marc Chomaz,et al.  The dynamics of a viscous soap film with soluble surfactant , 2001, Journal of Fluid Mechanics.

[83]  박일한,et al.  전자장시스템에서 Level Set Method , 2008 .

[84]  Gary W. Meyer,et al.  Newton’s Colors: Simulating Interference Phenomena in Realistic Image Synthesis , 1992 .