A Categorical Equivalence for Tense Nelson Algebras
暂无分享,去创建一个
[1] Antonino Salibra,et al. Polyadic algebras over nonclassical logics , 1993 .
[2] Nicholas Rescher,et al. The Introduction of Tense Operators , 1971 .
[3] Aldo V. Figallo,et al. Remarks on Heyting algebras with tense operators , 2012 .
[4] D. Gabbay. MODEL THEORY FOR TENSE LOGICS , 1975 .
[5] W. B. Ewald,et al. Intuitionistic tense and modal logic , 1986, Journal of Symbolic Logic.
[6] A. V. Figallo,et al. An Algebraic Study of Tense Operators on Nelson Algebras , 2021, Stud Logica.
[7] Aldo V. Figallo,et al. Principal and Boolean Congruences on $$\varvec{IKt}$$IKt-Algebras , 2018, Stud Logica.
[8] Mahmood Bakhshi. Tense operators on non-commutative residuated lattices , 2017, Soft Comput..
[9] E. J. Lemmon,et al. Algebraic semantics for modal logics I , 1966, Journal of Symbolic Logic (JSL).
[10] T. Ahmed. Space and time via Topological and Tense cylindric algebras , 2020, 2006.03421.
[11] Helena Rasiowa,et al. N-lattices and constructive logic with strong negation , 1958 .
[12] Dimiter Vakarelov,et al. Notes on N-lattices and constructive logic with strong negation , 1977 .
[13] Jan Paseka,et al. Partial tense MV-algebras and related functions , 2017, Fuzzy Sets Syst..
[14] Aldo V. Figallo,et al. Subdirectly Irreducible IKt-Algebras , 2017, Stud Logica.
[15] Ivan Chajda,et al. Tense Operators on Basic Algebras , 2011 .
[16] George Georgescu,et al. Tense Operators on MV-Algebras and Lukasiewicz-Moisil Algebras , 2007, Fundam. Informaticae.
[17] Gustavo Pelaitay,et al. An algebraic axiomatization of the Ewald’s intuitionistic tense logic , 2014, Soft Comput..
[18] John P. Burgess,et al. Basic Tense Logic , 1984 .
[19] Andrzej Sendlewski,et al. Nelson algebras through Heyting ones: I , 1990, Stud Logica.
[20] Ivan Chajda,et al. Algebraic axiomatization of tense intuitionistic logic , 2011 .
[21] David Nelson,et al. Constructible falsity , 1949, Journal of Symbolic Logic.
[22] Jouni Järvinen,et al. Characterizing intermediate tense logics in terms of Galois connections , 2014, Log. J. IGPL.
[23] M. Fitting. Intuitionistic logic, model theory and forcing , 1969 .
[24] Tomasz Kowalski,et al. Varieties of Tense Algebras , 1998, Reports Math. Log..