A Categorical Equivalence for Tense Nelson Algebras

In this paper we present a category equivalent to that of tense Nelson algebras. The objects in this new category are pairs consisting of an IKt-algebra and a Boolean IKt-congruence and the morphisms are a special kind of IKt-homomorphisms. This categorical equivalence permits understanding tense Nelson algebras in terms of the better–known IKt-algebras.

[1]  Antonino Salibra,et al.  Polyadic algebras over nonclassical logics , 1993 .

[2]  Nicholas Rescher,et al.  The Introduction of Tense Operators , 1971 .

[3]  Aldo V. Figallo,et al.  Remarks on Heyting algebras with tense operators , 2012 .

[4]  D. Gabbay MODEL THEORY FOR TENSE LOGICS , 1975 .

[5]  W. B. Ewald,et al.  Intuitionistic tense and modal logic , 1986, Journal of Symbolic Logic.

[6]  A. V. Figallo,et al.  An Algebraic Study of Tense Operators on Nelson Algebras , 2021, Stud Logica.

[7]  Aldo V. Figallo,et al.  Principal and Boolean Congruences on $$\varvec{IKt}$$IKt-Algebras , 2018, Stud Logica.

[8]  Mahmood Bakhshi Tense operators on non-commutative residuated lattices , 2017, Soft Comput..

[9]  E. J. Lemmon,et al.  Algebraic semantics for modal logics I , 1966, Journal of Symbolic Logic (JSL).

[10]  T. Ahmed Space and time via Topological and Tense cylindric algebras , 2020, 2006.03421.

[11]  Helena Rasiowa,et al.  N-lattices and constructive logic with strong negation , 1958 .

[12]  Dimiter Vakarelov,et al.  Notes on N-lattices and constructive logic with strong negation , 1977 .

[13]  Jan Paseka,et al.  Partial tense MV-algebras and related functions , 2017, Fuzzy Sets Syst..

[14]  Aldo V. Figallo,et al.  Subdirectly Irreducible IKt-Algebras , 2017, Stud Logica.

[15]  Ivan Chajda,et al.  Tense Operators on Basic Algebras , 2011 .

[16]  George Georgescu,et al.  Tense Operators on MV-Algebras and Lukasiewicz-Moisil Algebras , 2007, Fundam. Informaticae.

[17]  Gustavo Pelaitay,et al.  An algebraic axiomatization of the Ewald’s intuitionistic tense logic , 2014, Soft Comput..

[18]  John P. Burgess,et al.  Basic Tense Logic , 1984 .

[19]  Andrzej Sendlewski,et al.  Nelson algebras through Heyting ones: I , 1990, Stud Logica.

[20]  Ivan Chajda,et al.  Algebraic axiomatization of tense intuitionistic logic , 2011 .

[21]  David Nelson,et al.  Constructible falsity , 1949, Journal of Symbolic Logic.

[22]  Jouni Järvinen,et al.  Characterizing intermediate tense logics in terms of Galois connections , 2014, Log. J. IGPL.

[23]  M. Fitting Intuitionistic logic, model theory and forcing , 1969 .

[24]  Tomasz Kowalski,et al.  Varieties of Tense Algebras , 1998, Reports Math. Log..