Exact Computation of the Voronoi Diagram of Spheres in 3D, Its Topology and Its Geometric Invariants

In this paper, we are addressing the exact computation of the Delaunay graph (or quasi-triangulation) and the Voronoi diagram of spheres using Wu's algorithm. Our main contribution is first a methodology for automated derivation of invariants of the Delaunay empty circumcircle predicate for spheres and the Voronoi vertex of four spheres, then the application of this methodology to get all geometrical invariants that intervene in this problem and the exact computation of the Delaunay graph and the Voronoi diagram of spheres. To the best of our knowledge, there does not exist a comprehensive treatment of the exact computation with geometrical invariants of the Delaunay graph and the Voronoi diagram of spheres. Starting from the system of equations defining the zero-dimensional algebraic set of the problem, we are following Wu's algorithm to transform the initial system into an equivalent Wu characteristic (triangular) set. In the corresponding system of algebraic equations, in each polynomial (except the first one), the variable with higher order from the preceding polynomial has been eliminated (by pseudo-remainder computations) and the last polynomial is a polynomial of a single variable. By regrouping all the formal coefficients for each monomial in each polynomial, we get polynomials that are invariants for the given problem. We rewrite the original system by replacing the invariant polynomials by new formal coefficients. We repeat the process until all the algebraic relationships (syzygies) between the invariants have been found by applying Wu's algorithm on the invariants.

[1]  Marina L. Gavrilova,et al.  Updating the topology of the dynamic Voronoi diagram for spheres in Euclidean d-dimensional space , 2003, Comput. Aided Geom. Des..

[2]  Marina L. Gavrilova,et al.  Proximity and applications in general metrics , 1999 .

[3]  Robin Sibson,et al.  Computing Dirichlet Tessellations in the Plane , 1978, Comput. J..

[4]  Deok-Soo Kim,et al.  Region-expansion for the Voronoi diagram of 3D spheres , 2006, Comput. Aided Des..

[5]  Franz Aurenhammer,et al.  Voronoi Diagrams , 2000, Handbook of Computational Geometry.

[6]  Hans-Martin Will Fast and Efficient Computation of Additively Weighted Voronoi Cells for Applications in Molecular Biology , 1998, SWAT.

[7]  Vasiliki Stamati,et al.  A Feature-Based CAD Approach to Jewellery Re-engineering , 2005 .

[8]  Gershon Elber,et al.  Computing the Voronoi cells of planes, spheres and cylinders in R2 , 2009, Comput. Aided Geom. Des..

[9]  Leonidas J. Guibas,et al.  Randomized incremental construction of Delaunay and Voronoi diagrams , 1990, Algorithmica.

[10]  François Anton A Certified Delaunay Graph Conflict Locator for Semi-algebraic Sets , 2005, ICCSA.

[11]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[12]  Xiao-Shan Gao,et al.  Automated Reasoning and Equation Solving with the Characteristic Set Method , 2006, Journal of Computer Science and Technology.

[13]  G. Totten,et al.  Alloy production and materials manufacturing , 2003 .

[14]  Deok-Soo Kim,et al.  Euclidean Voronoi diagram of 3D balls and its computation via tracing edges , 2005, Comput. Aided Des..

[15]  François Anton,et al.  Voronoi diagrams of semi-algebraic sets , 2003 .

[16]  Kevin Q. Brown,et al.  Voronoi Diagrams from Convex Hulls , 1979, Inf. Process. Lett..

[17]  Kim Donguk,et al.  COMPUTATION OF MOLECULAR SURFACE USING EUCLIDEAN VORONOI DIAGRAM , 2005 .

[18]  Sangsoo Kim,et al.  Euclidean Voronoi diagrams of 3D spheres and applications to protein structure analysis , 2005 .

[19]  Robust algorithm for k-gon voronoi diagram construction , 2002, CCCG.

[20]  Deok-Soo Kim,et al.  Quasi-worlds and quasi-operators on quasi-triangulations , 2010, Comput. Aided Des..

[21]  Georges Voronoi,et al.  Nouvelles applications des paramètres continus à théorie des formes quadratiques. Deuxième Mémoire. Recherches sur les paralléloèdres primitifs. , 1909 .

[22]  Deok-Soo Kim,et al.  Quasi-triangulation and interworld data structure in three dimensions , 2006, Comput. Aided Des..

[23]  Christopher M. Gold,et al.  The Voronoi Diagram of Circles and Its Application to the Visualization of the Growth of Particles , 2009, Trans. Comput. Sci..

[24]  G. Greuel,et al.  A Singular Introduction to Commutative Algebra , 2002 .

[25]  Gershon Elber,et al.  Computing the Voronoi cells of planes, spheres and cylinders in R3 , 2008, SPM '08.

[26]  Marina L. Gavrilova An Explicit Solution for Computing the vertices of the Euclidean d-Dimensional Voronoi Diagram of Spheres in a Floating-Point Arithmetic , 2009, Int. J. Comput. Geom. Appl..

[27]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. , 1908 .