Analysis of the Optimization Landscapes for Overcomplete Representation Learning

We study nonconvex optimization landscapes for learning overcomplete representations, including learning (i) sparsely used overcomplete dictionaries and (ii) convolutional dictionaries, where these unsupervised learning problems find many applications in high-dimensional data analysis. Despite the empirical success of simple nonconvex algorithms, theoretical justifications of why these methods work so well are far from satisfactory. In this work, we show these problems can be formulated as $\ell^4$-norm optimization problems with spherical constraint, and study the geometric properties of their nonconvex optimization landscapes. For both problems, we show the nonconvex objectives have benign (global) geometric structures, in the sense that every local minimizer is close to one of the target solutions and every saddle point exhibits negative curvature. This discovery enables the development of guaranteed global optimization methods using simple initializations. For both problems, we show the nonconvex objectives have benign geometric structures -- every local minimizer is close to one of the target solutions and every saddle point exhibits negative curvature -- either in the entire space or within a sufficiently large region. This discovery ensures local search algorithms (such as Riemannian gradient descent) with simple initializations approximately find the target solutions. Finally, numerical experiments justify our theoretical discoveries.

[1]  John Wright,et al.  A Geometric Analysis of Phase Retrieval , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[2]  Terrence J. Sejnowski,et al.  Learning Overcomplete Representations , 2000, Neural Computation.

[3]  Pengcheng Zhou,et al.  Short-and-Sparse Deconvolution - A Geometric Approach , 2019, ICLR.

[4]  Gábor Lugosi,et al.  Concentration Inequalities - A Nonasymptotic Theory of Independence , 2013, Concentration Inequalities.

[5]  Tselil Schramm,et al.  Fast and robust tensor decomposition with applications to dictionary learning , 2017, COLT.

[6]  Huan Wang,et al.  On the local correctness of ℓ1-minimization for dictionary learning , 2011, 2014 IEEE International Symposium on Information Theory.

[7]  Michael Elad,et al.  Dictionaries for Sparse Representation Modeling , 2010, Proceedings of the IEEE.

[8]  Michael B. Wakin,et al.  An Introduction To Compressive Sampling [A sensing/sampling paradigm that goes against the common knowledge in data acquisition] , 2008 .

[9]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[10]  Yi Ma,et al.  Complete Dictionary Learning via 𝓁4-Norm Maximization over the Orthogonal Group , 2019, J. Mach. Learn. Res..

[11]  John Wright,et al.  Geometry and Symmetry in Short-and-Sparse Deconvolution , 2019, ICML.

[12]  Huan Wang,et al.  Exact Recovery of Sparsely-Used Dictionaries , 2012, COLT.

[13]  John Wright,et al.  Using negative curvature in solving nonlinear programs , 2017, Comput. Optim. Appl..

[14]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[15]  Yurii Nesterov,et al.  Cubic regularization of Newton method and its global performance , 2006, Math. Program..

[16]  Sanjeev Arora,et al.  Simple, Efficient, and Neural Algorithms for Sparse Coding , 2015, COLT.

[17]  John Wright,et al.  Complete dictionary recovery over the sphere , 2015, 2015 International Conference on Sampling Theory and Applications (SampTA).

[18]  Laurent Demanet,et al.  Recovering the Sparsest Element in a Subspace , 2013, 1310.1654.

[19]  Brendt Wohlberg,et al.  Convolutional Dictionary Learning: A Comparative Review and New Algorithms , 2017, IEEE Transactions on Computational Imaging.

[20]  Quoc V. Le,et al.  ICA with Reconstruction Cost for Efficient Overcomplete Feature Learning , 2011, NIPS.

[21]  Lloyd R. Welch,et al.  Lower bounds on the maximum cross correlation of signals (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[22]  Levent Tunçel,et al.  Optimization algorithms on matrix manifolds , 2009, Math. Comput..

[23]  Anthony Man-Cho So,et al.  Nonsmooth Optimization over Stiefel Manifold: Riemannian Subgradient Methods , 2019, ArXiv.

[24]  Yurii Nesterov,et al.  Generalized Power Method for Sparse Principal Component Analysis , 2008, J. Mach. Learn. Res..

[25]  Yuxin Chen,et al.  Implicit Regularization in Nonconvex Statistical Estimation: Gradient Descent Converges Linearly for Phase Retrieval, Matrix Completion, and Blind Deconvolution , 2017, Found. Comput. Math..

[26]  Yu Bai,et al.  Subgradient Descent Learns Orthogonal Dictionaries , 2018, ICLR.

[27]  Guillermo Sapiro,et al.  Online Learning for Matrix Factorization and Sparse Coding , 2009, J. Mach. Learn. Res..

[28]  Robert W. Heath,et al.  Designing structured tight frames via an alternating projection method , 2005, IEEE Transactions on Information Theory.

[29]  Holger Rauhut,et al.  A Mathematical Introduction to Compressive Sensing , 2013, Applied and Numerical Harmonic Analysis.

[30]  Pascal Vincent,et al.  Representation Learning: A Review and New Perspectives , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  M. Elad,et al.  $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.

[32]  Nicolas Boumal,et al.  Efficiently escaping saddle points on manifolds , 2019, NeurIPS.

[33]  Jonathan Shi,et al.  Tensor principal component analysis via sum-of-square proofs , 2015, COLT.

[34]  Yanjun Li,et al.  Global Geometry of Multichannel Sparse Blind Deconvolution on the Sphere , 2018, NeurIPS.

[35]  Emmanuel J. Candès,et al.  A Probabilistic and RIPless Theory of Compressed Sensing , 2010, IEEE Transactions on Information Theory.

[36]  Daniel P. Robinson,et al.  A Linearly Convergent Method for Non-Smooth Non-Convex Optimization on the Grassmannian with Applications to Robust Subspace and Dictionary Learning , 2019, NeurIPS.

[37]  John Wright,et al.  Finding a Sparse Vector in a Subspace: Linear Sparsity Using Alternating Directions , 2014, IEEE Transactions on Information Theory.

[38]  Tengyu Ma,et al.  Polynomial-Time Tensor Decompositions with Sum-of-Squares , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[39]  Rekha R. Thomas,et al.  Semidefinite Optimization and Convex Algebraic Geometry , 2012 .

[40]  Zhihui Zhu,et al.  A Nonconvex Approach for Exact and Efficient Multichannel Sparse Blind Deconvolution , 2019, NeurIPS.

[41]  Pierre-Antoine Absil,et al.  Trust-Region Methods on Riemannian Manifolds , 2007, Found. Comput. Math..

[42]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..

[43]  Peter L. Bartlett,et al.  Alternating minimization for dictionary learning with random initialization , 2017, NIPS.

[44]  Graham W. Taylor,et al.  Deconvolutional networks , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[45]  Terrence J. Sejnowski,et al.  Learning Nonlinear Overcomplete Representations for Efficient Coding , 1997, NIPS.

[46]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[47]  John Wright,et al.  Complete Dictionary Recovery Over the Sphere I: Overview and the Geometric Picture , 2015, IEEE Transactions on Information Theory.

[48]  Furong Huang,et al.  Escaping From Saddle Points - Online Stochastic Gradient for Tensor Decomposition , 2015, COLT.

[49]  Michael I. Jordan,et al.  Gradient Descent Only Converges to Minimizers , 2016, COLT.

[50]  Lei Zhang,et al.  Convolutional Sparse Coding for Image Super-Resolution , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[51]  Prateek Jain,et al.  Learning Sparsely Used Overcomplete Dictionaries via Alternating Minimization , 2013, SIAM J. Optim..

[52]  Dustin G. Mixon Unit norm tight frames in finite-dimensional spaces , 2014 .

[53]  Michael Elad,et al.  Theoretical Foundations of Deep Learning via Sparse Representations: A Multilayer Sparse Model and Its Connection to Convolutional Neural Networks , 2018, IEEE Signal Processing Magazine.

[54]  Jason D. Lee,et al.  When Does Non-Orthogonal Tensor Decomposition Have No Spurious Local Minima? , 2019, ArXiv.

[55]  P. Absil,et al.  Erratum to: ``Global rates of convergence for nonconvex optimization on manifolds'' , 2016, IMA Journal of Numerical Analysis.

[56]  John Wright,et al.  Structured Local Optima in Sparse Blind Deconvolution , 2018, IEEE Transactions on Information Theory.

[57]  Michael Elad,et al.  Sparse and Redundant Representations - From Theory to Applications in Signal and Image Processing , 2010 .

[58]  Liming Wang,et al.  Blind Deconvolution From Multiple Sparse Inputs , 2016, IEEE Signal Processing Letters.

[59]  Guillermo Sapiro,et al.  Sparse Representation for Computer Vision and Pattern Recognition , 2010, Proceedings of the IEEE.

[60]  Michael Elad,et al.  Convolutional Dictionary Learning via Local Processing , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[61]  Mátyás A. Sustik,et al.  On the existence of equiangular tight frames , 2007 .

[62]  Tengyu Ma,et al.  On the optimization landscape of tensor decompositions , 2017, Mathematical Programming.

[63]  Michael I. Jordan,et al.  How to Escape Saddle Points Efficiently , 2017, ICML.

[64]  A. Bruckstein,et al.  K-SVD : An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation , 2005 .

[65]  John Wright,et al.  Complete Dictionary Recovery Over the Sphere II: Recovery by Riemannian Trust-Region Method , 2015, IEEE Transactions on Information Theory.

[66]  John Wright,et al.  Efficient Dictionary Learning with Gradient Descent , 2018, ICML.

[67]  Rajat Raina,et al.  Efficient sparse coding algorithms , 2006, NIPS.

[68]  David J. Field,et al.  Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.

[69]  Yuejie Chi,et al.  Manifold Gradient Descent Solves Multi-Channel Sparse Blind Deconvolution Provably and Efficiently , 2019, IEEE Transactions on Information Theory.

[70]  David Steurer,et al.  Dictionary Learning and Tensor Decomposition via the Sum-of-Squares Method , 2014, STOC.

[71]  John Wright,et al.  When Are Nonconvex Problems Not Scary? , 2015, ArXiv.

[72]  John Wright,et al.  On the Global Geometry of Sphere-Constrained Sparse Blind Deconvolution , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[73]  Anima Anandkumar,et al.  Analyzing Tensor Power Method Dynamics in Overcomplete Regime , 2014, J. Mach. Learn. Res..

[74]  Anders P. Eriksson,et al.  Fast Convolutional Sparse Coding , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.