Heat transport by turbulent Rayleigh–Bénard convection for Pr ≃ 0.8 and 3 × 1012 ≲ Ra ≲ 1015: aspect ratio Γ = 0.50

We report on the experimental results for heat-transport measure- ments, in the form of the Nusselt number Nu, by turbulent Rayleigh-B´ enard convection (RBC) in a cylindrical sample of aspect ratio 0 D/L = 0.50 (D = 1.12m is the diameter and L = 2.24m the height). The measurements were made using sulfur hexafluoride at pressures up to 19bar as the fluid. They are for the Rayleigh-number range 3◊10 12 . Ra . 10 15 and for Prandtl numbers Pr between 0.79 and 0.86. For Ra < Ra 1 ' 1.4◊10 13 we find Nu = N0 Ra eff with eff = 0.312±0.002, which is consistent with classical turbulent RBC in a system with laminar boundary layers below the top and above the bottom

[1]  G. Ahlers,et al.  Prandtl-number dependence of heat transport in turbulent Rayleigh-Bénard convection. , 2001, Physical review letters.

[2]  E. Brown,et al.  Large-scale circulation model for turbulent Rayleigh-Bénard convection. , 2007, Physical review letters.

[3]  G. Ahlers,et al.  Turbulent Rayleigh–Bénard convection in a cylindrical container with aspect ratio Γ = 0.50 and Prandtl number Pr = 4.38 , 2011, Journal of Fluid Mechanics.

[4]  Sheng‐Qi Zhou,et al.  Heat-flux measurement in high-Prandtl-number turbulent Rayleigh-Bénard convection. , 2002, Physical review letters.

[5]  E. Brown,et al.  Reorientation of the large-scale circulation in turbulent Rayleigh-Bénard convection. , 2005, Physical review letters.

[6]  E. Spiegel Convection in Stars I. Basic Boussinesq Convection , 1971 .

[7]  Olga Shishkina,et al.  Boundary layers and wind in cylindrical Rayleigh–Bénard cells , 2012, Journal of Fluid Mechanics.

[8]  B. Chabaud,et al.  Ultimate regime of convection: Robustness to poor thermal reservoirs , 2005, cond-mat/0501745.

[9]  Quan Zhou,et al.  Measured instantaneous viscous boundary layer in turbulent Rayleigh-Bénard convection. , 2009, Physical review letters.

[10]  D. Lohse,et al.  Small-Scale Properties of Turbulent Rayleigh-Bénard Convection , 2010 .

[11]  Eberhard Bodenschatz,et al.  Turbulent Rayleigh–Bénard convection for a Prandtl number of 0.67 , 2009, Journal of Fluid Mechanics.

[12]  Louis N. Howard,et al.  Heat transport by turbulent convection , 1963, Journal of Fluid Mechanics.

[13]  D. Funfschilling,et al.  Search for the "ultimate state" in turbulent Rayleigh-Bénard convection. , 2009, Physical review letters.

[14]  Eric Brown,et al.  Non-Oberbeck–Boussinesq effects in strongly turbulent Rayleigh–Bénard convection , 2005, Journal of Fluid Mechanics.

[15]  E. Brown,et al.  A model of diffusion in a potential well for the dynamics of the large-scale circulation in turbulent Rayleigh-Bénard convection , 2008, 0807.3193.

[16]  S. Zaleski,et al.  Scaling of hard thermal turbulence in Rayleigh-Bénard convection , 1989, Journal of Fluid Mechanics.

[17]  B. Castaing,et al.  Long relaxation times and tilt sensitivity in Rayleigh Bénard turbulence , 2004 .

[18]  Eric Brown,et al.  Heat transport in turbulent Rayleigh-Bénard convection: Effect of finite top- and bottom-plate conductivities , 2005 .

[19]  Constantin,et al.  Variational bounds on energy dissipation in incompressible flows. III. Convection. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[20]  D. Lohse,et al.  Thermal convection for large Prandtl numbers. , 2000, Physical review letters.

[21]  D. Lohse,et al.  Scaling of global momentum transport in Taylor-Couette and pipe flow , 2000, nlin/0009045.

[22]  F. Toschi,et al.  Ultimate state of thermal convection. , 2002, Physical review letters.

[23]  K. R. Sreenivasan,et al.  Turbulent convection at very high Rayleigh numbers , 1999, Nature.

[24]  S. Cioni,et al.  Strongly turbulent Rayleigh–Bénard convection in mercury: comparison with results at moderate Prandtl number , 1997, Journal of Fluid Mechanics.

[25]  Zhuo Li Note on the normalization of predicted gamma-ray burst neutrino flux , 2011, 1112.2240.

[26]  D. Funfschilling,et al.  Transitions in heat transport by turbulent convection at Rayleigh numbers up to 1015 , 2009 .

[27]  G. Ahlers,et al.  Effect of tilting on turbulent convection: cylindrical samples with aspect ratio $\Gamma = 0. 50$ , 2012, Journal of Fluid Mechanics.

[28]  D. Lohse,et al.  Torque scaling in turbulent Taylor-Couette flow with co- and counterrotating cylinders. , 2010, Physical review letters.

[29]  Roberto Verzicco,et al.  Effect of non perfect thermal sources in turbulent thermal convection , 2005 .

[30]  M. Schwarzschild Convection in Stars. , 1961 .

[31]  Belmonte,et al.  Temperature and velocity profiles of turbulent convection in water. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[32]  P. Linden THE FLUID MECHANICS OF NATURAL VENTILATION , 1999 .

[33]  Guenter Ahlers Trends Turbulent convection , 2009 .

[34]  S. Grossmann Scaling in thermal convection: A unifying view , 2022 .

[35]  B. Castaing,et al.  Side wall effects in Rayleigh Bénard experiments , 2001 .

[36]  Jacques Chaussy,et al.  Observation of the Ultimate Regime in Rayleigh-Bénard Convection , 1997 .

[37]  A. Thess,et al.  Transition on local temperature fluctuations in highly turbulent convection , 2009 .

[38]  D. Lohse,et al.  Ultimate turbulent Taylor-Couette flow. , 2011, Physical review letters.

[39]  Detlef Lohse,et al.  Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection , 2008, 0811.0471.

[40]  R. Verzicco Effects of nonperfect thermal sources in turbulent thermal convection , 2004 .

[41]  Ciliberto,et al.  Large-scale flow properties of turbulent thermal convection. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[42]  R. Kraichnan Turbulent Thermal Convection at Arbitrary Prandtl Number , 1962 .

[43]  Evidence of a boundary layer instability at very high Rayleigh number , 2008, 0801.4830.

[44]  W. Marsden I and J , 2012 .

[45]  Richard J Goldstein,et al.  High-Rayleigh-number convection of pressurized gases in a horizontal enclosure , 2002, Journal of Fluid Mechanics.

[46]  Belmonte,et al.  Temperature and velocity boundary layers in turbulent convection. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[47]  Does confined turbulent convection ever attain the 'asymptotic scaling' with 1/2 power? , 2010 .

[48]  Eberhard Bodenschatz,et al.  Heat transport by turbulent Rayleigh–Bénard convection for Pr ≃ 0.8 and 4 × 1011 ≲ Ra ≲ 2 × 1014: ultimate-state transition for aspect ratio Γ = 1.00 , 2012, 1205.5907.

[49]  D. Lohse,et al.  Fluctuations in turbulent Rayleigh-Bénard convection: The role of plumes , 2004 .

[50]  J. Niemela,et al.  The Use of Cryogenic Helium for Classical Turbulence: Promises and Hurdles , 2006 .

[51]  B. Eckhardt,et al.  Directed percolation model for turbulence transition in shear flows , 2012 .

[52]  Detlef Lohse,et al.  Non-oberbeck-boussinesq effects in gaseous Rayleigh-Bénard convection. , 2007, Physical review letters.

[53]  A. Mazzino,et al.  Kolmogorov scaling and intermittency in Rayleigh-Taylor turbulence. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  Robert Kaiser,et al.  On the triggering of the Ultimate Regime of convection , 2012, 1202.0661.

[55]  X. Shang,et al.  Scaling of the local convective heat flux in turbulent Rayleigh-Bénard convection. , 2008, Physical review letters.

[56]  D. Lohse,et al.  Thermal boundary layer profiles in turbulent Rayleigh-Bénard convection in a cylindrical sample. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  Rayleigh and Prandtl number scaling in the bulk of Rayleigh–Bénard turbulence , 2004, nlin/0410010.

[58]  Eberhard Bodenschatz,et al.  Transition to the ultimate state of turbulent Rayleigh-Bénard convection. , 2012, Physical review letters.

[59]  D. Funfschilling,et al.  Heat transport by turbulent Rayleigh–Bénard convection in cylindrical samples with aspect ratio one and larger , 2005, Journal of Fluid Mechanics.

[60]  Detlef Lohse,et al.  Scaling in thermal convection: a unifying theory , 2000, Journal of Fluid Mechanics.

[61]  A. Oberbeck,et al.  Ueber die Wärmeleitung der Flüssigkeiten bei Berücksichtigung der Strömungen infolge von Temperaturdifferenzen , 1879 .

[62]  B. Castaing,et al.  High rayleigh number convection with gaseous helium at low temperature , 1996 .

[63]  Eric Brown,et al.  Heat transport by turbulent Rayleigh–Bénard convection in cylindrical cells with aspect ratio one and less , 2004, Journal of Fluid Mechanics.

[64]  Chao Sun,et al.  Azimuthal symmetry, flow dynamics, and heat transport in turbulent thermal convection in a cylinder with an aspect ratio of 0.5. , 2005, Physical review letters.

[65]  F. Toschi,et al.  Axially homogeneous Rayleigh–Bénard convection in a cylindrical cell , 2011, Journal of Fluid Mechanics.

[66]  D. Lohse,et al.  Prandtl and Rayleigh number dependence of the Reynolds number in turbulent thermal convection. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[67]  J. Niemela,et al.  Confined turbulent convection , 2002, Journal of Fluid Mechanics.

[68]  G. Ahlers,et al.  Effect of sidewall conductance on heat-transport measurements for turbulent Rayleigh-Bénard convection. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[69]  Detlef Lohse,et al.  Radial boundary layer structure and Nusselt number in Rayleigh–Bénard convection , 2009, Journal of Fluid Mechanics.

[70]  G. Ahlers,et al.  Temperature gradients, and search for non-Boussinesq effects, in the interior of turbulent Rayleigh-Bénard convection , 2007 .

[71]  Bajaj,et al.  Heat transport in turbulent rayleigh-Benard convection , 2000, Physical review letters.

[72]  W. Tollmien,et al.  Zur turbulenten Strömung in Rohren und längs Platten , 1961 .

[73]  L. Skrbek,et al.  Efficiency of heat transfer in turbulent Rayleigh-Bénard convection. , 2011, Physical review letters.

[74]  K. Xia,et al.  Heat transport by turbulent Rayleigh–Bénard convection in 1 m diameter cylindrical cells of widely varying aspect ratio , 2005, Journal of Fluid Mechanics.

[75]  Leo P. Kadanoff,et al.  Turbulent heat flow: Structures and scaling , 2001 .

[76]  D. Lohse,et al.  Multiple scaling in the ultimate regime of thermal convection , 2011 .

[77]  A. Smits,et al.  Wall-bounded turbulent flows at high Reynolds numbers: Recent advances and key issues , 2010 .

[78]  B. Castaing,et al.  Observation of the 1/2 power law in Rayleigh-Bénard convection. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[79]  Katepalli R. Sreenivasan,et al.  Turbulent convection at high Rayleigh numbers and aspect ratio 4 , 2006, Journal of Fluid Mechanics.

[80]  Detlef Lohse,et al.  Non-Oberbeck-Boussinesq effects in turbulent thermal convection in ethane close to the critical point. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[81]  S. Lui,et al.  Spatial structure of the thermal boundary layer in turbulent convection , 1998 .

[82]  E. Brown,et al.  Rotations and cessations of the large-scale circulation in turbulent Rayleigh–Bénard convection , 2006, Journal of Fluid Mechanics.

[83]  F. Chillà,et al.  Turbulent Rayleigh–Bénard convection in gaseous and liquid He , 2001 .

[84]  The search for slow transients, and the effect of imperfect vertical alignment, in turbulent Rayleigh–Bénard convection , 2005, Journal of Fluid Mechanics.

[85]  G. Ahlers,et al.  Rayleigh-Benard convection in binary-gas mixtures: Thermophysical properties and the onset of convection , 1997 .

[86]  T. Kármán,et al.  Mechanische Ahnlichkeit und Turbulenz , 1930 .

[87]  D. Funfschilling,et al.  Logarithmic temperature profiles in turbulent Rayleigh-Bénard convection. , 2012, Physical review letters.

[88]  J. Niemela,et al.  Erratum: Turbulent convection at very high Rayleigh numbers , 2000, Nature.